
Higher-Order Acausal Models

2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools (EOOLT)
Paphos, Cyprus, July 8, 2008

David Broman
Department of Computer and

Information Science
Linköping University, Sweden

davbr@ida.liu.se

Peter Fritzson
Department of Computer and

Information Science
Linköping University, Sweden

petfr@ida.liu.se

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

2

The idea of Higher-Order Acausal Models...

Higher-Order
Functions
I.e. first class citizens,
can be passed around
as any value

+
Acausal Models
Models in EOO
languages, composing
DAEs and other
interconnected models.

=
Higher-Order
Acausal Models
I.e., first class
acausal models.

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

3

Modeling Kernel Language (MKL)

Modeling Kernel Language (MKL)
 A research language with similar modeling capabilities as a subset of

the Modelica language.
 Primarily aimed at investigating novel language construct.
 An formal operation semantics of the dynamic elaboration process

exists. (Broman, 2007, Tech. Report “Flow Lambda Calculus for
Declarative Physical Connection Semantics”)

Here we will use MKL to demonstrate the concept of HOAMs, but...
 ...the concept is not limited to this language and can of course be

considered in other languages as well...

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

4

Agenda

Part II
Higher-Order Modeling in MKL

Part I
The Basic Idea of Higher-Order

Part III
Related Work and Future Perspective

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

5

Part I
The Basic Idea of Higher-Order

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

6

What is an Anonymous Function?

An anonymous function do not have a
defined name.

Parameters within parathesis. Function body.

An anonymous function can then be
applied to an argument.

Evaluation steps

Anonymous functions are treated as
values. It is convenient to give them
names.

The named values can then be used in
a new expressen.

Anonymous functions (lambda abstractions) exist in ordinary functional languages
(e.g. SML, Haskell, LISP etc.)

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

7

What is a Higher-Order Function? (1/3)

Also, a higher-order function is said to be first-class citizens,
e.g. the function is treated as a value and can be passed
around freely.

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

8

What is a Higher-Order Function? (2/3)

Define a function twice with a function
parameter f.

We can also have an anonymous
function as argument.

Apply twice to power2 and constant 3.

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

9

What is a Higher-Order Function? (3/3)

The same definition can be given as a
higher-order function:

The compose function can then be used
as follows:

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

10

Elaboration and Simulation of Acausal Models

Also common in EOOL
 Connections between models

can typically both express
potential connections (across)
and flow (also called through).

 Possibility to express discrete
events

Our semantic in this work concerns the elaboration phase.

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

11

Higher-Order Acausal Models

Emphasizes that HOAMs are first-class citizens, i.e., values that
can be passed around.

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

12

Part II
Higher Order Modeling in MKL

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

13

Basic Physical Modeling in MKL

Wires are used to connect
model instances.

TwoPin is used by composition.
Differential equations

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

14

Higher-Order Acausal Models

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

15

1. Parameterized with other HOAMs
Two formal parameters:
Engine and Tire

Creating automobile
instances with different
engines

Note: Similar to the Modelica
declare construct.

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

16

Higher-Order Acausal Models

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

17

2. Recursively composed to generate new HOAMs
Example of a Mechatronic system with a DC motor and a flexible shaft

Creates a flexible shaft
with 120 shaft elements.

How is this model defined?

A rotational connector in
the mechanical domain.

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

18

2. Recursively composed to generate new HOAMs
Example of a Mechatronic system with a DC motor and a flexible shaft

One shaft element is
created by standard
components.

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

19

2. Recursively composed to generate new HOAMs
Example of a Mechatronic system with a DC motor and a flexible shaft

The flexible shaft is
recursively defined by
creating ShaftElements.

The recursion terminates
after n steps (in the
example 120 steps)

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

20

2. Recursively composed to generate new HOAMs
Example of a Mechatronic system with a DC motor and a flexible shaft

The flexible shaft is
recursively defined by
creating ShaftElements.

The recursion terminates
after n steps (in the
example 120 steps)

Do we always need to write a new recursive
definition of a model when we for example
want to serialize a number of models?

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

21

Higher-Order Acausal Models

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

22

3. Passed as argument to, or as result from functions

Composes model M1 and
M2 in parallel and returns
a new model.

We can use a set function
that defines e.g. the
resistance or inductance.

However, e.g. an inductor
takes 3 arguments!

We can now create a new
composed model Foo.

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

23

3. Passed as argument to, or as result from functions

Composes model M1 and
M2 in parallel and returns
a new model.

We can use a set function
that defines e.g. the
resistance or inductance.

However, e.g. an inductor
takes 3 arguments!

We can now create a new
composed model Foo.

Why is this more expressive than defining the
composed model directly?

It’s not, but imagine that you should compose
120 elements...

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

24

3. Passed as argument to, or as result from functions

Similar to the flexibleshaft
model, but now with an
arbitrary model M and
connection constructor C.

After encapsulation, we have a transformation function
that returns a new serialized model with two pins.

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

25

3. Passed as argument to, or as result from functions

We can now use the
generic function to serialize
120 shaftelements.

The good news is that once the serialize transformation
function is defined, it can be reused with arbitrary model
which has two pins.

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

26

Part III
Related Work and Future Perspective

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

27

Related Work (1/2)
Functional Hybrid Modeling (FHM)
(Nilsson, Peterson, and Hudak, 2007)
 Have a similar concept called first-class relations on signals.
 Similarity: First-class and can be recursively defined.
 Difference: MKL models can be parameterized on any type, where first-class relations

on signals in FHM are parameterized using ordinary function abstraction.
 Compared to MKL, FHM has yet no published formal semantics.

Metaprogramming and Metamodeling
E.g. MetaML and Template Haskell
 Metaprograms are programs that take other programs / models as data and produces

new programs / models as output.
 Approach of HOAMs enables access to transform models direct in the language

without representing models as data.
 Metaprogramming can on the other hand enables greater generality of model

transformations.

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

28

Related Work (2/2)

Modelica semantics
(Modelica Association, 2007)
 The redeclare construct have similar ability as passing HOAMs to other HOAMs.
 For-equations can be used to create sequences of connected models, i.e. same as

recursive HOAMs.
 It is not yet possible to create model transformation functions in Modelica (such as the

serialize function), since models cannot be passed into functions.
 The Modelica semantics are informally defined using natural language. Itʼs semantics

are complex and large. MKL on the other hand has a very small formal semantics.

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

29

Future Perspective

Current Limitations
 HOAMs as presented here are limited to the elaboration phase.

Interesting Future Research
 HOAMs as part part of the run-time (simulation-time), i.e., run-time creation of

models, compositon of models.
 A general approach to structurally variable systems, i.e. models can be transformed,

instantiated and destroyed at run-time.

Research challenges
 How can we guarantee static type-safety?
 How can we preserve high performance? E.g. how do we handle index reduction?
 Is it possible to define a formal sound semantics of such a language?

Part I
The Basic Idea
of Higher-Order

David Broman
davbr@ida.liu.se

Part II
Higher-Order
Modeling in MKL

Part III
Related Work and
Future Perspective

30

Conclusions

Higher-Order
Functions

+ Acausal Models =
Higher-Order
Acausal Models
(HOAMs)

Thanks for listening!

