Higher-Order Acausal Models

2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools (EOOLT)

Paphos, Cyprus, July 8, 2008

David Broman Peter Fritzson
Department of Computer and Department of Computer and
Information Science Information Science
Linkdping University, Sweden Linkdping University, Sweden
davbr@ida.liu.se petfr@ida.liu.se

25 Uk,

VP Nri,

g €,
& I/A
3 2
% &
% J\ ¢
o, <+

Linkdpings universitet




P

The idea of Higher-Order Acausal Models...

davbr@ida.liu.se

Higher-Order Acausal Models Higher-Order
Functions + Models in EOO Acausal Models
|.e. first class citizens, languages, composing - l.e., first class
can be passed around DAEs and other acausal models.
as any value interconnected models.
Part | Part Il Part IlI é{“
The Basic Idea Higher-Order Related Work and Vs o

Linkdpings universitet

of Higher-Order Modeling in MKL Future Perspective




Modeling Kernel Language (MKL)

Modeling Kernel Language (MKL)

= Avresearch language with similar modeling capabilities as a subset of
the Modelica language.

= Primarily aimed at investigating novel language construct.

= An formal operation semantics of the dynamic elaboration process
exists. (Broman, 2007, Tech. Report “Flow Lambda Calculus for
Declarative Physical Connection Semantics”)

Here we will use MKL to demonstrate the concept of HOAMSs, but...

= ...the concept is not limited to this language and can of course be
considered in other languages as well...

Part | Part Il Part lll
The Basic Idea Higher-Order Related Work and
of Higher-Order Modeling in MKL Future Perspective

3

David Broman
davbr@ida.liu.se

UNry,

<GS
av ..
& l ‘ %,
% J‘ &
% o
Mg gE

Linkdpings universitet




4

David Broman
davbr@ida.liu.se

Part |

The Basic Idea of Higher-Order

Part Il

DCMotor

Higher-Order Modeling in MKL

Shaft elements: 1..N

Part Il
Related Work and Future Perspective

iﬂound
Falil Part II Part i é%
The Basic Idea Higher-Order Related Work and o .
of Higher-Order Modeling in MKL Future Perspective Linkdpings universitet




5

David Broman
davbr@ida.liu.se

Part |
The Basic Idea of Higher-Order

WA

Part | Part Il Part Il é{.
ﬂ The Basic Idea Higher-Order Related Work and o .
of Higher-Order Modeling in MKL Future Perspective Linkdpings universitet




6

What is an Anonymous Function?

davbr@ida.liu.se

Anonymous functions (lambda abstractions) exist in ordinary functional languages
(e.g. SML, Haskell, LISP etc.)

An anonymous function do not have a func (x) {xxx}
defined name. w_
Parameters within parathesis. Function body.
An anonymous function can then be f“n:( ;‘) {x*x}(3)
applied to an argument. oo
PP J — 9 ’ Evaluation steps
Anonymous functions are treated as def pi = 3.14
values. It is convenient to give them def power2 = func(x){x*x}
names.
\

-
power2(pi)

The named values can then be used in —» power2(3.14)

a hew expressen. 5 3.14 % 3.14
— 9.8596
\ J o
Part | Part Il Part lll ’Jt
The Basic Idea Higher-Order Related Work and N .
of Higher-Order Modeling in MKL Future Perspective Linkdpings universitet




7

What is a Higher-Order Function? (1/3)

davbr@ida.liu.se

4 N
DEFINITION 1 (Higher-Order Function).

A higher-order function is a function that

1. takes another function as argument, and/or
2. returns a function as the result.

Also, a higher-order function is said to be first-class citizens,
e.g. the function is treated as a value and can be passed
around freely.

Part | Part Il Part llI é{Q
The Basic Idea Higher-Order Related Work and N .
of Higher-Order Modeling in MKL Future Perspective Linkbpings universitet




8

What is a Higher-Order Function? (2/3)

davbr@ida.liu.se

4 )
DEFINITION 1 (Higher-Order Function). ) ] . ] .
A higher_orderﬁlnction is a‘function that Deflne a funCtlon tWICe Wlth a funCtlon
_takes another function as argument, andlor _P parameter f.
2. returns a function as the result. ~
- W
def twice = func(f,y){
£(£(y))
: }i
Apply twice to power2 and constant 3. )
f .
twice(power2, 3)
— power2 (power2(3))
— power2(3x3) We can also have an anonymous
— powerz(9) function as argument.
— 9%9
Y ) twice(func(x){2%xx-3},5)
— func(x){2*x-3} (func(x){2*x-3}(5))
— func(x){2*x-3}(2%5-3)
— func(x){2xx-3}(7)
— 2%x7-3
— 11
. W
Y Part | Part I Part Il ‘:{Q
The Basic Idea Higher-Order Related Work and N .
of Higher-Order Modeling in MKL Future Perspective it miversiiet




e

What is a Higher-Order Function? (3/3) | DedgEien

e N
DEFINITION 1 (Higher-Order Function). In mathematics, functional composition is normally ex-
A higher-order function is a function that pressed using the infix operator o. Two functions f : X —
;-’akesa Aot " l ent, andlor Yandg:Y — Z canbe composedtogo f : X — Z,by
. returns a function as tne result. . tel
L ) using the definition (g o f)(z) = g(f(z)).

The same definition can be givenasa The compose function can then be used

higher-order function: as follows:
4 )
def compose = func(g,f)({ def add7 = func(x){7+x};
func(x){g(£(x))}
}i def foo = compose(power2,add’);

— def foo = func(x){power2(add7(x))};

foo(4)

func(x) {power2(add7(x))}(4)
power2(add7(4))

power2(7+4)

power2(11l)

11x11

121

Part | Part Il Part Il ’Jt
The Basic Idea Higher-Order Related Work and

of Higher-Order Modeling in MKL Future Perspective Hexhpings wivessiiet

Ll




10

Elaboration and Simulation of Acausal Models  oavisomr

davbr@ida.liu.se

4 N
DEFINITION 2 (Acausal Model). Also common in EOOL
21: ac;zslgal model is an abstraction that encapsulates and = Connections between models
m .
P can typically both express
1. continuous-time behavior in form of differential alge- potential connections (across)
braic equations (DAEs). and flow (also called through).
2. o'ther zr.zterconn.ected acausal models, where. the direc- = Possibility to express discrete
tion of information flow between sub-models is not spec- events
ified.
\_ J
“Static” semantics / compile time “Dynamic” semantics / run time
_,/\ ,/\
~ T
Eggd ——» | Hybrid DAE > | Executable | — | Simulation
Elaboration Equation Simulation | Result
Transformation &
\ Code generation
Our semantic in this work concerns the elaboration phase.
g
Part | Part Il Part IlI ;}ﬁts
The Basic Idea Higher-Order Related Work and N .
of Higher-Order Modeling in MKL Future Perspective Dot iversict




Higher-Order Acausal Models

David Broman
davbr@ida.liu.se

/

DEFINITION 3 (Higher-Order Acausal Model (HOAM)).

A higher-order acausal model is an acausal model, which
can be

1. parametrized with other HOAMs.

2. recursively composed to generate new HOAMs.
3. passed as argument to, or returned as result from func-

tions.
N \
N\

J

Emphasizes that HOAMs are first-class citizens, i.e., values that
can be passed around.

Part | Part Il Part lll é{*
The Basic Idea Higher-Order Related Work and e
of Higher-Order Modeling in MKL Future Perspective Hexhpings universitst




12

David Broman
davbr@ida.liu.se

Part Il
Higher Order Modeling in MKL

DCMotor
- Shaft elements: 1..N
Resistor Inductor | gpri_ng _________ |
J=0.2 | —I—\/\/\~D— !
Voltage Inertia I c=8 Inertia |
__| Source EMF J_=J_ | L=L :
V=60 | Damper - | |
J=0.2 | J=0.03 |
Ground | =15 |
— e e |
Part | Part Il Part Il é{“
The Basic Idea w Higher-Order Related Work and e
of Higher-Order Modeling in MKL Future Perspective Hexhpings universitst




13

Basic Physical Modeling in MKL

davbr@ida.liu.se

4 N
def Circuit = model()({
def wl = Wire(); 3 Wires are used to connect
def w2 = Wire(); _—"| modelinstances. R=10] | R=100
= W4 . "
def w3 = Wire(); VA=220
def w4 = Wire(); ;§> w2 w3
Resistor(wl,w2,10);
Capacitor(w2,w4,0.01); 0
Resistor(wl,w3,100); def Wire = func(){ C=0.01 L=0.1
Inductor(w3,w4,0.1); (var(),£flow())
VSourceAC(wl,w4,220); }s !
Ground(w4) ; ! e
}i
\_ Y, g—
- N ( h
def TwoPin = model((pv,pi), (nv,ni),v){ def Inductor = model(p,n,L){
vV = pv - nv; def (_,pi) = p;
0 = pi + ni; def v = var(0);
}; TwoPin(p,n,Vv);
. //j,/”/ Lxder(pi) = v;
TwoPin is used by composition. /(}r/Y )
Differential equations
Part | Part Il Part Ill é{“
The Basic Idea ﬂ Higher-Order Related Work and T
of Higher-Order Modeling in MKL Future Perspective Hesphes i




Higher-Order Acausal Models

David Broman
davbr@ida.liu.se

-

DEFINITION 3 (Higher-Order Acausal Model (HOAM)).

A higher-order acausal model is an acausal model, which
can be

— . .
d_1. parametrized with other HOAAD
2. recursively composed to generate new HOAMs.

3. passed as argument to, or returned as result from func-
tions.

Part | Part Il Part IlI é{*
The Basic Idea y Higher-Order Related Work and

of Higher-Order Modeling in MKL Future Perspective it miversiiet

SGS U
v
&




15

1. Parameterized with other HOAMs

davbr@ida.liu.se

- pra— Two formal parameters:
def Automobile = model(Engine, Tire)( Engine and Tire

def cl = Connection();

def c2 = Connection();

Engine(cl);

Gearbox(cl,c2);

Tire(c2); Tire(c2); Tire(c2); Tire(c2)

. M

Creating automobile —> [ Automobile(EngineV6, TireTypeAl) ;)
instances with different —

engines \
[ Automobile( EnginireTypeA) ;)

Note: Similar to the Modelica
declare construct.

Part | Part Il Part Il é{“
The Basic Idea w Higher-Order Related Work and e
of Higher-Order Modeling in MKL Future Perspective Hexhpings universitst




Higher-Order Acausal Models

David Broman
davbr@ida.liu.se

4 N

DEFINITION 3 (Higher-Order Acausal Model (HOAM)).

A higher-order acausal model is an acausal model, which

can be

1. parametri 1 r HOAMs

2. recursively composed to generate new HO@
3. passed as argument to, or returned as result from func-
tions.
N Wy

Part | Part Il Part lll é{*
The Basic Idea y Higher-Order Related Work and e
of Higher-Order Modeling in MKL Future Perspective it miversiiet




17

2. Recursively composed to generate new HOAMs o

@jda.liu.se

Example of a Mechatronic system with a DC motor and a flexible shaft

n DCMotor
Shaft elements: 1..N
Resistor Inductor T gpri_ng _________ I
J=0.2 | ——l—\/\JA;E——
Voltage Inertia I c=8 Inertia

V=60 = | Damper
J=0.2 | J=0.03
Ground | 4=15

— e |

"

A rotational connector in

4 the mechanical domain.
def MechSys = model()({
def cl = RotCon(); Creates a flexible shaft
def c2 = RotCon(); with 120 shaft elements.

DCMotor(cl);

Inertia(cl,c2,0.2); Ve
FlexibleShaft(c2,RotCon(),120); How is this model defined?
}i

\_ /
S RL
Part | Part II Part Il I
The Basic Idea y Higher-Order Related Work and
Linkdpings universitet

of Higher-Order Modeling in MKL Future Perspective




2. Recursively composed to generate new HOAMs

18

rid Broman
@jda.liu.se

Example of a Mechatronic system with a DC motor and a flexible shaft

m DCMotor
Shaft elements: 1..N
Resistor ndoctorn ! T — == |
nductor | Spring
J=0.2 I —a— /\ /g I
Voltage Inertia I c=8 Inertia |
__| Source EMF L=l | L=L :
V=60 | Damper o |
J=0.2 | J=0.03 |
Ground | =15 |
— e |
4 ™
def ShaftElement = model(ca,cb){
def cl = RotCon();
One shaft element is Spring(ca,cl,8);
created by standard Damper(ca,cl,1.5);
components. Inertia(cl,cb,0.03);
}i
\ Wy
Part | Part Il Part lll é{*
The Basic Idea w Higher-Order Related Work and e
of Higher-Order Modeling in MKL Future Perspective Hexhpings universitst




19

2. Recursively composed to generate new HOAMs o

@jda.liu.se

Example of a Mechatronic system with a DC motor and a flexible shaft

n DCMotor
Shaft elements: 1..N
Resistor Inductor T gpri_ng _________ I
J=02 | —I—\/\/\—Bf
Voltage Inertia I c=8 Inertia

V=60 = | Damper
J=0.2 | J=0.03
Ground | =15

— e |

"

e )
defrec FlexibleShaft = model(ca,cb,n){ «_ The flexible shaft is
if (n== T recursively defined by
ShaftElem 1 Cb) creating ShaftElements.
else{
def cl = RotCon();
ShafFElement(ca,cl) ; B The recursion terminates
FlexibleShaft(cl,cb,n-1)g— after n steps (in the
} }i example 120 steps)
r’
Part | Part Il Part Ill ;ée;
The Basic Idea w Higher-Order Related Work and L e
Modeling in MKL Future Perspective Linkdpings universitet

of Higher-Order




2. Recursively composed to generate new HOAMs

20

rid Broman
@jda.liu.se

Example of a Mechatronic system with a DC motor and a flexible shaft

n DCMotor
Shaft elements: 1..N

Resistor Inductor T gpri_ng _________ |
L J=0.2 | ——l—\/\/A—B—— !
Voltage Inertia I c=8 Inertia |
__| Source EMF L;L | LEL |
L o |
V=60 | Damper o |
J=0.2 | J=0.03 |
Ground | 4=15 |
— e |

-
defrec FlexibleShaft =

if(n==

ShaftElemé a,cb)
else{

def cl = RotCon();

ShaftElement(ca,cl);

.
model (ca,cb,n) { «|

The flexible shaft is

\ recurSively defined by

creating ShaftElements.

Do we always need to write a new recursive

FlexibleShaft(cl,cb oy
. IASEE definition of a model when we for example
. ' want to serialize a number of models?
14
: A
Part | Part II Part il ‘jt
The Basic Idea % Higher-Order Related Work and e
of Higher-Order Modeling in MKL Future Perspective Hoipngs wiversiel




Higher-Order Acausal Models

21

David Broman
davbr@ida.liu.se

-

can be

[ ——

DEFINITION 3 (Higher-Order Acausal Model (HOAM)).
A higher-order acausal model is an acausal model, which

1. parametrized with other HOAMs.

2. recursively composed to generate new HOAMs.
<’5. passed as argument to, or returned as result from func-\>
tions.

]

.

J

Part | Part i
The Basic Idea N Higher-Order

of Higher-Order Modeling in MKL

SGS U
v
&

Part Ii é{h
Related Work and

Future Perspective Linkdpings universitet




22

3. Passed as argument to, or as result from functions isom

@ida.liu.se
4 N
def composeparallel = func(M1l,6M2){
model (p,n) { — Composes model M1 and
Ml(p,n); ——— M2 in parallel and returns
M2(p/n); a new model.
}
}i :
\. Y However, e.g. an inductor
takes 3 arguments!
(,def set = func(M,val){ A def Inductor = model(p,n,L)({
model (p,n) :
M(P:n,val) ; T We can use a set function
} that defines e.g. the
}; resistance or inductance.
- y,

We can now create a new

/ composed model Foo.

def Foo = composeparallel(set(Resistor, 100),
set(Inductor, 0.1));

Part | Part Il Part lli ﬁ}{ﬁ
The Basic Idea ﬂ Higher-Order Related Work and
Modeling in MKL Future Perspective Lmkopmgs universitet

of Higher-Order




23

3. Passed as argument to, or as result from functions isom

@ida.liu.se
4 N\
def composeparallel = func(M1l,M2){
model (p,n) { — Composes model M1 and
Ml(p,n); ——— M2 in parallel and returns
M2(p/n); a new model.
}
}i .
_ Y However, e.g. an inductor

model(p,n){

4 )
def set = func(M,val){

M(p,n,val);

takes 3 arguments!
def Inductor = model(p,n,L){

T We can use a set function

Why is this more expressive than defining the

It's not, but imagine that you should compose

Part llI P
s, Py &
Related Work and

}

}i

\ )
composed model directly?
def Foo =
120 elements...

Part | Part Il

The Basic Idea ﬂ Higher-Order

of Higher-Order

Modeling in MKL Future Perspective Linkdpings universitet




3. Passed as argument to, or as result from functions

24

rid Broman
@jda.liu.se

-
defrec recmodel =

if(n==1)
M(ca,cb)
else(
def cl =
M(ca,cl);

C();

model(M,C,ca,cb,n){

recmodel(M,C,cl,cb,n-1);

Shaft elements: 1..N

Similar to the flexibleshaft
model, but now with an
arbitrary model M and
connection constructor C.

J

After encapsulation, we have a transformation function
that returns a new serialized model with two pins.

-

N
def serialize =¢€:nc(M,C,n){
model(ca,cb){
recmodel(M,C,ca,cb,n);
}
}i
Y,
Part | Part Il Part Il é{“
Related Work and s g

The Basic Idea
of Higher-Order

g

Higher-Order
Modeling in MKL

Future Perspective Linkdpings universitet




25

3. Passed as argument to, or as result from functions isom

@jda.liu.se

We can now use the
_generic function to serialize

AL
‘51‘

e ™
def MekSys2 = model()({
def cl = RotCon();
def c2 = RotCon();
DCMotor (cl); 120 shaftelements.
Inertia(cl,c2,0.2);
def FlexibleShaft =
serialize(ShaftElement,RotCon,120);
FlexibleShaft(c2,RotCon());
}i
\_ Y,
The good news is that once the serialize transformation
function is defined, it can be reused with arbitrary model
which has two pins.
def Res50 =
serialize(set(Resistor,100), Wire, 50);
Part | Part Il Part lli
The Basic Idea ﬂ Higher-Order Related Work and
of Higher-Order Modeling in MKL Future Perspective

Lmkopmgs universitet




Part |

The Basic Idea
of Higher-Order

26

David Broman
davbr@ida.liu.se

Part Il

Related Work and Future Perspective

Part Il Part Il é’e
Higher-Order Related Work and
Modeling in MKL Future Perspective Linkdpings universitet




27

Related Work (1/2) Devid Broman

davbr@ida.liu.se

Functional Hybrid Modeling (FHM)
(Nilsson, Peterson, and Hudak, 2007)

Have a similar concept called first-class relations on signals.
Similarity: First-class and can be recursively defined.

Difference: MKL models can be parameterized on any type, where first-class relations
on signals in FHM are parameterized using ordinary function abstraction.

Compared to MKL, FHM has yet no published formal semantics.

Metaprogramming and Metamodeling
E.g. MetaML and Template Haskell

Metaprograms are programs that take other programs / models as data and produces
new programs / models as output.

Approach of HOAMs enables access to transform models direct in the language
without representing models as data.

Metaprogramming can on the other hand enables greater generality of model
transformations.

UNry,

Part | Part I Part I é{,
The Basic Idea Higher-Order Related Work and N .
of Higher-Order Modeling in MKL Future Perspective Linkdpings universitet




28

Related Work (2/2) Devid Broman

davbr@ida.liu.se

Modelica semantics
(Modelica Association, 2007)
= The redeclare construct have similar ability as passing HOAMs to other HOAMs.

= For-equations can be used to create sequences of connected models, i.e. same as
recursive HOAMs.

= |tis not yet possible to create model transformation functions in Modelica (such as the
serialize function), since models cannot be passed into functions.

= The Modelica semantics are informally defined using natural language. It’'s semantics
are complex and large. MKL on the other hand has a very small formal semantics.

UNry,

Part | Part Il Part il é’“
The Basic Idea Higher-Order Related Work and
Linkdpings universitet

of Higher-Order Modeling in MKL Future Perspective




29

Future Perspective Devid Broman

davbr@ida.liu.se

Current Limitations
= HOAMSs as presented here are limited to the elaboration phase.

Interesting Future Research

= HOAMSs as part part of the run-time (simulation-time), i.e., run-time creation of
models, compositon of models.

= A general approach to structurally variable systems, i.e. models can be transformed,
instantiated and destroyed at run-time.

Research challenges
= How can we guarantee static type-safety?

= How can we preserve high performance? E.g. how do we handle index reduction?
= |s it possible to define a formal sound semantics of such a language?

UNry,

Part | Part II Part Ill é{,
The Basic Idea Higher-Order Related Work and N .
of Higher-Order Modeling in MKL Future Perspective Linkdpings universitet




30

Conclusions

davbr@ida.liu.se

Higher-Order
Acausal Models
(HOAMS)

Higher-Order + Acausal Models =
Functions

4 I
DEFINITION 3 (Higher-Order Acausal Model (HOAM)).
A higher-order acausal model is an acausal model, which
can be

1. parametrized with other HOAMs.
2. recursively composed to generate new HOAMs.

3. passed as argument to, or returned as result from func-
tions.

Thanks for listening!

UNry,

Part | Part II Part Ill é%
The Basic Idea Higher-Order Related Work and N .
of Higher-Order Modeling in MKL Future Perspective Linkdpings universitet




