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The idea of Higher-Order Acausal Models...

davbr@ida.liu.se

Higher-Order Acausal Models Higher-Order
Functions + Models in EOO Acausal Models
|.e. first class citizens, languages, composing - l.e., first class
can be passed around DAEs and other acausal models.
as any value interconnected models.
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Modeling Kernel Language (MKL)

Modeling Kernel Language (MKL)

= Avresearch language with similar modeling capabilities as a subset of
the Modelica language.

= Primarily aimed at investigating novel language construct.

= An formal operation semantics of the dynamic elaboration process
exists. (Broman, 2007, Tech. Report “Flow Lambda Calculus for
Declarative Physical Connection Semantics”)

Here we will use MKL to demonstrate the concept of HOAMSs, but...

= ...the concept is not limited to this language and can of course be
considered in other languages as well...
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The Basic Idea of Higher-Order
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DCMotor

Higher-Order Modeling in MKL

Shaft elements: 1..N
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What is an Anonymous Function?
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Anonymous functions (lambda abstractions) exist in ordinary functional languages
(e.g. SML, Haskell, LISP etc.)

An anonymous function do not have a func (x) {xxx}
defined name. w_
Parameters within parathesis. Function body.
An anonymous function can then be f“n:( ;‘) {x*x}(3)
applied to an argument. oo
PP J — 9 ’ Evaluation steps
Anonymous functions are treated as def pi = 3.14
values. It is convenient to give them def power2 = func(x){x*x}
names.
\

-
power2(pi)

The named values can then be used in —» power2(3.14)

a hew expressen. 5 3.14 % 3.14
— 9.8596
\ J o
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What is a Higher-Order Function? (1/3)
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4 N
DEFINITION 1 (Higher-Order Function).

A higher-order function is a function that

1. takes another function as argument, and/or
2. returns a function as the result.

Also, a higher-order function is said to be first-class citizens,
e.g. the function is treated as a value and can be passed
around freely.
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What is a Higher-Order Function? (2/3)
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4 )
DEFINITION 1 (Higher-Order Function). ) ] . ] .
A higher_orderﬁlnction is a‘function that Deflne a funCtlon tWICe Wlth a funCtlon
_takes another function as argument, andlor _P parameter f.
2. returns a function as the result. ~
- W
def twice = func(f,y){
£(£(y))
: }i
Apply twice to power2 and constant 3. )
f .
twice(power2, 3)
— power2 (power2(3))
— power2(3x3) We can also have an anonymous
— powerz(9) function as argument.
— 9%9
Y ) twice(func(x){2%xx-3},5)
— func(x){2*x-3} (func(x){2*x-3}(5))
— func(x){2*x-3}(2%5-3)
— func(x){2xx-3}(7)
— 2%x7-3
— 11
. W
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What is a Higher-Order Function? (3/3) | DedgEien

e N
DEFINITION 1 (Higher-Order Function). In mathematics, functional composition is normally ex-
A higher-order function is a function that pressed using the infix operator o. Two functions f : X —
;-’akesa Aot " l ent, andlor Yandg:Y — Z canbe composedtogo f : X — Z,by
. returns a function as tne result. . tel
L ) using the definition (g o f)(z) = g(f(z)).

The same definition can be givenasa The compose function can then be used

higher-order function: as follows:
4 )
def compose = func(g,f)({ def add7 = func(x){7+x};
func(x){g(£(x))}
}i def foo = compose(power2,add’);

— def foo = func(x){power2(add7(x))};

foo(4)

func(x) {power2(add7(x))}(4)
power2(add7(4))

power2(7+4)

power2(11l)

11x11

121
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Elaboration and Simulation of Acausal Models  oavisomr
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4 N
DEFINITION 2 (Acausal Model). Also common in EOOL
21: ac;zslgal model is an abstraction that encapsulates and = Connections between models
m .
P can typically both express
1. continuous-time behavior in form of differential alge- potential connections (across)
braic equations (DAEs). and flow (also called through).
2. o'ther zr.zterconn.ected acausal models, where. the direc- = Possibility to express discrete
tion of information flow between sub-models is not spec- events
ified.
\_ J
“Static” semantics / compile time “Dynamic” semantics / run time
_,/\ ,/\
~ T
Eggd ——» | Hybrid DAE > | Executable | — | Simulation
Elaboration Equation Simulation | Result
Transformation &
\ Code generation
Our semantic in this work concerns the elaboration phase.
g
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Higher-Order Acausal Models
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/

DEFINITION 3 (Higher-Order Acausal Model (HOAM)).

A higher-order acausal model is an acausal model, which
can be

1. parametrized with other HOAMs.

2. recursively composed to generate new HOAMs.
3. passed as argument to, or returned as result from func-

tions.
N \
N\

J

Emphasizes that HOAMs are first-class citizens, i.e., values that
can be passed around.
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Part Il
Higher Order Modeling in MKL

DCMotor
- Shaft elements: 1..N
Resistor Inductor | gpri_ng _________ |
J=0.2 | —I—\/\/\~D— !
Voltage Inertia I c=8 Inertia |
__| Source EMF J_=J_ | L=L :
V=60 | Damper - | |
J=0.2 | J=0.03 |
Ground | =15 |
— e e |
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Basic Physical Modeling in MKL
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4 N
def Circuit = model()({
def wl = Wire(); 3 Wires are used to connect
def w2 = Wire(); _—"| modelinstances. R=10] | R=100
= W4 . "
def w3 = Wire(); VA=220
def w4 = Wire(); ;§> w2 w3
Resistor(wl,w2,10);
Capacitor(w2,w4,0.01); 0
Resistor(wl,w3,100); def Wire = func(){ C=0.01 L=0.1
Inductor(w3,w4,0.1); (var(),£flow())
VSourceAC(wl,w4,220); }s !
Ground(w4) ; ! e
}i
\_ Y, g—
- N ( h
def TwoPin = model((pv,pi), (nv,ni),v){ def Inductor = model(p,n,L){
vV = pv - nv; def (_,pi) = p;
0 = pi + ni; def v = var(0);
}; TwoPin(p,n,Vv);
. //j,/”/ Lxder(pi) = v;
TwoPin is used by composition. /(}r/Y )
Differential equations
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DEFINITION 3 (Higher-Order Acausal Model (HOAM)).

A higher-order acausal model is an acausal model, which
can be

— . .
d_1. parametrized with other HOAAD
2. recursively composed to generate new HOAMs.

3. passed as argument to, or returned as result from func-
tions.
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1. Parameterized with other HOAMs
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- pra— Two formal parameters:
def Automobile = model(Engine, Tire)( Engine and Tire

def cl = Connection();

def c2 = Connection();

Engine(cl);

Gearbox(cl,c2);

Tire(c2); Tire(c2); Tire(c2); Tire(c2)

. M

Creating automobile —> [ Automobile(EngineV6, TireTypeAl) ;)
instances with different —

engines \
[ Automobile( EnginireTypeA) ;)

Note: Similar to the Modelica
declare construct.
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Higher-Order Acausal Models
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4 N

DEFINITION 3 (Higher-Order Acausal Model (HOAM)).

A higher-order acausal model is an acausal model, which

can be

1. parametri 1 r HOAMs

2. recursively composed to generate new HO@
3. passed as argument to, or returned as result from func-
tions.
N Wy
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2. Recursively composed to generate new HOAMs o
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Example of a Mechatronic system with a DC motor and a flexible shaft

n DCMotor
Shaft elements: 1..N
Resistor Inductor T gpri_ng _________ I
J=0.2 | ——l—\/\JA;E——
Voltage Inertia I c=8 Inertia

V=60 = | Damper
J=0.2 | J=0.03
Ground | 4=15

— e |

"

A rotational connector in

4 the mechanical domain.
def MechSys = model()({
def cl = RotCon(); Creates a flexible shaft
def c2 = RotCon(); with 120 shaft elements.

DCMotor(cl);

Inertia(cl,c2,0.2); Ve
FlexibleShaft(c2,RotCon(),120); How is this model defined?
}i

\_ /
S RL
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2. Recursively composed to generate new HOAMs
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Example of a Mechatronic system with a DC motor and a flexible shaft

m DCMotor
Shaft elements: 1..N
Resistor ndoctorn ! T — == |
nductor | Spring
J=0.2 I —a— /\ /g I
Voltage Inertia I c=8 Inertia |
__| Source EMF L=l | L=L :
V=60 | Damper o |
J=0.2 | J=0.03 |
Ground | =15 |
— e |
4 ™
def ShaftElement = model(ca,cb){
def cl = RotCon();
One shaft element is Spring(ca,cl,8);
created by standard Damper(ca,cl,1.5);
components. Inertia(cl,cb,0.03);
}i
\ Wy
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2. Recursively composed to generate new HOAMs o
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Example of a Mechatronic system with a DC motor and a flexible shaft

n DCMotor
Shaft elements: 1..N
Resistor Inductor T gpri_ng _________ I
J=02 | —I—\/\/\—Bf
Voltage Inertia I c=8 Inertia

V=60 = | Damper
J=0.2 | J=0.03
Ground | =15

— e |

"

e )
defrec FlexibleShaft = model(ca,cb,n){ «_ The flexible shaft is
if (n== T recursively defined by
ShaftElem 1 Cb) creating ShaftElements.
else{
def cl = RotCon();
ShafFElement(ca,cl) ; B The recursion terminates
FlexibleShaft(cl,cb,n-1)g— after n steps (in the
} }i example 120 steps)
r’
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Example of a Mechatronic system with a DC motor and a flexible shaft

n DCMotor
Shaft elements: 1..N

Resistor Inductor T gpri_ng _________ |
L J=0.2 | ——l—\/\/A—B—— !
Voltage Inertia I c=8 Inertia |
__| Source EMF L;L | LEL |
L o |
V=60 | Damper o |
J=0.2 | J=0.03 |
Ground | 4=15 |
— e |

-
defrec FlexibleShaft =

if(n==

ShaftElemé a,cb)
else{

def cl = RotCon();

ShaftElement(ca,cl);

.
model (ca,cb,n) { «|

The flexible shaft is

\ recurSively defined by

creating ShaftElements.

Do we always need to write a new recursive

FlexibleShaft(cl,cb oy
. IASEE definition of a model when we for example
. ' want to serialize a number of models?
14
: A
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-

can be

[ ——

DEFINITION 3 (Higher-Order Acausal Model (HOAM)).
A higher-order acausal model is an acausal model, which

1. parametrized with other HOAMs.

2. recursively composed to generate new HOAMs.
<’5. passed as argument to, or returned as result from func-\>
tions.

]

.

J
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3. Passed as argument to, or as result from functions isom
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4 N
def composeparallel = func(M1l,6M2){
model (p,n) { — Composes model M1 and
Ml(p,n); ——— M2 in parallel and returns
M2(p/n); a new model.
}
}i :
\. Y However, e.g. an inductor
takes 3 arguments!
(,def set = func(M,val){ A def Inductor = model(p,n,L)({
model (p,n) :
M(P:n,val) ; T We can use a set function
} that defines e.g. the
}; resistance or inductance.
- y,

We can now create a new

/ composed model Foo.

def Foo = composeparallel(set(Resistor, 100),
set(Inductor, 0.1));

Part | Part Il Part lli ﬁ}{ﬁ
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3. Passed as argument to, or as result from functions isom
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4 N\
def composeparallel = func(M1l,M2){
model (p,n) { — Composes model M1 and
Ml(p,n); ——— M2 in parallel and returns
M2(p/n); a new model.
}
}i .
_ Y However, e.g. an inductor

model(p,n){

4 )
def set = func(M,val){

M(p,n,val);

takes 3 arguments!
def Inductor = model(p,n,L){

T We can use a set function

Why is this more expressive than defining the

It's not, but imagine that you should compose

Part llI P
s, Py &
Related Work and

}

}i

\ )
composed model directly?
def Foo =
120 elements...
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3. Passed as argument to, or as result from functions
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-
defrec recmodel =

if(n==1)
M(ca,cb)
else(
def cl =
M(ca,cl);

C();

model(M,C,ca,cb,n){

recmodel(M,C,cl,cb,n-1);

Shaft elements: 1..N

Similar to the flexibleshaft
model, but now with an
arbitrary model M and
connection constructor C.

J

After encapsulation, we have a transformation function
that returns a new serialized model with two pins.

-

N
def serialize =¢€:nc(M,C,n){
model(ca,cb){
recmodel(M,C,ca,cb,n);
}
}i
Y,
Part | Part Il Part Il é{“
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3. Passed as argument to, or as result from functions isom
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We can now use the
_generic function to serialize

AL
‘51‘

e ™
def MekSys2 = model()({
def cl = RotCon();
def c2 = RotCon();
DCMotor (cl); 120 shaftelements.
Inertia(cl,c2,0.2);
def FlexibleShaft =
serialize(ShaftElement,RotCon,120);
FlexibleShaft(c2,RotCon());
}i
\_ Y,
The good news is that once the serialize transformation
function is defined, it can be reused with arbitrary model
which has two pins.
def Res50 =
serialize(set(Resistor,100), Wire, 50);
Part | Part Il Part lli
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Related Work (1/2) Devid Broman
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Functional Hybrid Modeling (FHM)
(Nilsson, Peterson, and Hudak, 2007)

Have a similar concept called first-class relations on signals.
Similarity: First-class and can be recursively defined.

Difference: MKL models can be parameterized on any type, where first-class relations
on signals in FHM are parameterized using ordinary function abstraction.

Compared to MKL, FHM has yet no published formal semantics.

Metaprogramming and Metamodeling
E.g. MetaML and Template Haskell

Metaprograms are programs that take other programs / models as data and produces
new programs / models as output.

Approach of HOAMs enables access to transform models direct in the language
without representing models as data.

Metaprogramming can on the other hand enables greater generality of model
transformations.

UNry,
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Related Work (2/2) Devid Broman
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Modelica semantics
(Modelica Association, 2007)
= The redeclare construct have similar ability as passing HOAMs to other HOAMs.

= For-equations can be used to create sequences of connected models, i.e. same as
recursive HOAMs.

= |tis not yet possible to create model transformation functions in Modelica (such as the
serialize function), since models cannot be passed into functions.

= The Modelica semantics are informally defined using natural language. It’'s semantics
are complex and large. MKL on the other hand has a very small formal semantics.

UNry,
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Future Perspective Devid Broman
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Current Limitations
= HOAMSs as presented here are limited to the elaboration phase.

Interesting Future Research

= HOAMSs as part part of the run-time (simulation-time), i.e., run-time creation of
models, compositon of models.

= A general approach to structurally variable systems, i.e. models can be transformed,
instantiated and destroyed at run-time.

Research challenges
= How can we guarantee static type-safety?

= How can we preserve high performance? E.g. how do we handle index reduction?
= |s it possible to define a formal sound semantics of such a language?

UNry,
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Conclusions
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Higher-Order
Acausal Models
(HOAMS)

Higher-Order + Acausal Models =
Functions

4 I
DEFINITION 3 (Higher-Order Acausal Model (HOAM)).
A higher-order acausal model is an acausal model, which
can be

1. parametrized with other HOAMs.
2. recursively composed to generate new HOAMs.

3. passed as argument to, or returned as result from func-
tions.

Thanks for listening!

UNry,
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