Beyond Simulation: Computer Aided Control System Design using Equation-Based Object Oriented Modelling for the Next Decade

Francesco Casella Filippo Donida Marco Lovera

Dipartimento di Elettronica e Informazione Politecnico di Milano - Italy

Computer-Aided Control System Design (CACSD)

System-Level Modelling: OOM (Modelica)

Simulation

Control System Analysis & Design

Modelling for Control System Design - I

- Critical control systems require dynamic modelling for their design
 - Knowledge about plant dynamics required for controller design (e.g. state-space equations or transfer functions)
 - Plant might not be available to gather experimental data
 - Experiments might be expensive/time-consuming/dangerous
 - Different plant design may be compared at early design stages
 - CS performance assessed and optimized before going on-line

Compact models for control system design

Detailed models for system simulation

Modelling for Control System Design - II

- Compact models for CS design
 - Low number of state variables (2-20)
 - Must capture the fundamental dynamics: many approximations
 - Must cover the whole operating range
 - Parameters should have a physical meaning
 - State-space form

$$\begin{aligned} \dot{x}(t) &= f(x(t), u(t), p, t) \\ y(t) &= g(x(t), u(t), p, t) \end{aligned}$$

Linear(ized) models
$$\dot{x}(t) = Ax(t) + Bu(t)$$

 $y(t) = Cx(t) + Du(t)$

$$G(s) = C(sI - A)^{-1}B + D$$

- Detailed models for system simulation
 - Obtained from OOM tools and library
 - High number of state (10-500) and algebraic (100-10000) variables
 - Nonlinear DAEs $F(x(t), \dot{x}(t), u(t), y(t), p, t) = 0$

Current Support for CACSD in OOM tools

- Empirical identification of open-loop plant dynamics (simulation + system ID)
- Symbolic/numeric linearization
 - A, B, C, D matrices of high dimension
 - Can be reduced by standard linear MOR techniques
- Steady-state operating points (trimming) $F(\bar{x}, 0, \bar{u}, \bar{y}, p, 0) = 0$
 - Can be numerically problematic
- Closed-loop performance assessment by simulation
- Support to simplified model generation
 - by replaceable models with standard interfaces
 - usually not enough to get compact models for direct CS design
- Generation of real-time code for HIL simulation
 - Inline integration
 - Requires simplified models to begin with
- Limited optimization features

Future Perspectives

Future Perspectives

- Basic enabling technologies
 - Open standards for model and data exchange among tools
 - More open OOM tools
 - Automatic symbolic/numeric model order reduction
 - Improved initialization algorithms to solve steady-state problems
- New features for direct CS design support
 - Simplified symbolic transfer functions
 - Automatic derivation of LFT models
 - Inverse models for robotic systems
 - Fast and compact models for Model Predictive Control

— ...

Open Standards for Model/Data exchange

- Improved support for CS design requires the integration of different tools:
 - OOM compilers
 - Symbolic manipulation tools
 - CS design tools
- OOM tools should be more open
 - import/export model equations at various stages of compilation and manipulation
 - steer symbolic manipulation towards goals other than simulation
- Open standards for inter-tool data exchange should be available
- On-going work between Politecnico and Linkoping University for XML-based formats
 - easily represent complex data structures (e.g.: models)
 - easily translated to/from other representations
 - lots of available software for XML data handling
 - formally defined through DTD/XSD

Model Order Reduction

- Mixed numerical-symbolic MOR techniques have already been applied in the field of electronic circuits
- Basic steps:
 - specify relevant inputs and outputs
 - specify max error bounds
 - percentage error on steady-state values
 - max error during transients (time domain / frequency domain)
 - rank the terms in all DAEs, with respect to input/output accuracy
 - remove terms in ascending order, until error bound is exceeded
- Successful application in commercial tools (Analog Insydes by ITWM Fraunhofer Institut, Germany)
- Interfacing to OOM tools (OpenModelica) is currently being evaluated
- Same techniques could be embedded within the OOM compiler

Improved initialization

• Most analysis techniques require to solve the steady-state problem $F(\bar{x}, 0, \bar{u}, \bar{y}, p, 0) = 0$

If the problem is non-linear, the solver often fails because of convergence problems

• More robustness is required

٠

• Strategy 1: homotopy methods

 $F_e(x, \dot{x}, y, u, p, t) = 0$ $F_t(x, \dot{x}, y, u, p, t) = 0$

 $(1-\alpha)F_e(\bar{x}, 0, \bar{u}, \bar{y}, p, 0) + \alpha F_t(\bar{x}, 0, \bar{u}, \bar{y}, p, 0) = 0$

- Strategy 2: (easily!) re-use data from previous analysis to set up guess values
 - Initialization of similar models
 - Initialization of sub-models with suitable boundary conditions

Simplified Symbolic Transfer Functions

- Sometimes the plant dynamics has some critical features for CS design
- These can be identified on linearized dynamic models (transfer functions)
 - poorly damped complex conjugate poles
 - unstable poles
 - right half-plane zeros
- A nice feature is to obtain approximated transfer functions where the main dependency of such parameters on physical parameters is made explicit
- E.g., the natural frequency of conjugate poles in a mechanical system might depend mainly on the stiffness of a particular element
- This can be obtained by clever combination of OOM compilers, MOR tools, and symbolic manipulation tools

Automatic Derivation of LFT Models

- Linear Fractional Transformations are widely used in modern control science
- The system dynamics is described by a feedback connection of a dynamic LTI system and a Δ -block
- The Δ -block might represent
 - uncertain parameters
 - time-varying parameters
 - nonlinearities
- Models in this form are the starting points for
 - robust controller analysis and design
 - gain-scheduling controller design
 - uncertain parameter estimation from plant data
- These models should be obtained from the simulation model automatically (possibly after a MOR stage), as inputs for the CS design tools
- The coupling between OpenModelica and the LFR toolbox of ONERA is currently under investigation

Inverse models for robotic systems - I

- Multibody systems can be modelled with OOM languages (e.g. Modelica and the MultiBody library)
- Standard procedure: brings the model in a form suitable for simulation, given the torque inputs

Modelica model

$$B(q)\ddot{q} + H(q,\dot{q})\dot{q} + g(q) = \tau$$

$$y_p = K(q)$$

$$y_v = \frac{\partial K}{\partial q}\dot{q},$$

$$x = \begin{bmatrix} x_p \\ x_v \end{bmatrix} = \begin{bmatrix} q \\ \dot{q} \end{bmatrix}, \quad y = \begin{bmatrix} y_p \\ y_v \end{bmatrix}, \quad u = \tau$$

$$solve \text{ for } dx/dt, y$$

$$\dot{x} = f(x, u)$$

$$y = g(x, u).$$

Inverse models for robotic systems - II

- There are other interesting problems for the control engineer:
- 1. Inverse Kinematics (IK)
 - solve for the joint angles, given the end effector positions
- 2. Computed Torque (CT)
 - solve for the torque, given the reference joint angle trajectories
- 3. Dynamic Inversion (DI)
 - solve for the torque, given a virtual joint acceleration input v

 $q^{0} = K^{-1}(y_{p}^{0})$ $\dot{q}^{0} = \left(\frac{\partial K}{\partial q}\right)^{-1} y_{v}^{0}$

$$\tau = B(q^0)\ddot{q}^0 + H(q^0, \dot{q}^0)\dot{q}^0 + g(q^0)$$

$$\ddot{q} = v$$

$$\tau = B(q)v + H(q, \dot{q})\dot{q} + g(q)$$

- The corresponding (Modelica or procedural) code can be obtained by the usual techniques (BLT, tearing, etc.)
- Then directly used for the control system implementation and validation
- Suitable tool interfaces must exist to specify this kind of problems

Fast & Compact Models for MPC

- Model Predictive Control turns a control problem into an optimization problem
 - Discrete-time control variable $u(t) = u(k), \quad kT_s \leq t < (k+1)T_s.$
 - Figure of merit
 - control effort
 - distance from set point
 - problem-specific performance index (e.g. energy consumption)
 - Constraints
 - min/max values for control inputs, outputs, states, and their rates
 - dynamic relationship between inputs and outputs (system model!)
- $\begin{array}{l} x(k+1)=f(x(k),u(k),p,k)\\ y(k)=g(x(k),u(k),p,k) \end{array}$
- At each time step, a new optimization problem is solved, and the first control input is applied (*receding horizon approach*)
- Fast & compact models should be obtained from OO models
 - OOM language support: replaceable models
 - MOR techniques: can also span component boundaries!
 - Inline integration

Conclusions

- System-level modelling is essential for the control engineer
- OOM languages and tools currently provide:
 - very good support for simulation-based activities
 - limited direct support for CS design
- Future OOM tools should tackle the CS design problem more aggressively
 - (semi) automatic derivation of compact models
 - direct generation of models in the formalism required by the control technique
- This goal cannot be attained by monolithic tools, but rather by clever combinations of specialized tools
 - OOM compiler
 - MOR tools
 - LFT tools
 - CS design tools
 - ..
- More open interfaces are thus required on OOM tools (both open-source and commercial!) that go beyond simulation problems