Multi-Aspect Modeling
in Equation-Based Languages

EOOLT 2008, Cyprus

GUI-

Representation Documentation

Physical
Modeling

3D System Hints
Visualization

Author: Dirk Zimmer

ETH Ziirich, Institute of Computational Science, Department of Computer Science

Overview

« Motivation

« Classification of aspects

« Multiple aspects in Modelica
« Current downfalls

« Improved handling in SOL

« Demonstration

« Conclusions

© Dirk Zimmer, July 2007, Slide 2

Motivation

« Contemporary equation-based modeling languages are embedded in
modeling and simulation environments that feature various types of
data-representation:

— Icons for the graphical user interface (GUI)
-~ 3D-Visualization

- Sound-Module

- Auto-Documentation

- etc...

« Thus, the corresponding models contain more information than what
is needed for the actual physical model.

« Nowadays, a modeler has to cope with many multiple aspects.

© Dirk Zimmer, July 2007, Slide 3

Motivation: Example

Physical modeling

equation
connect (Torquel.flange_b,
connect (Torque2.flange_b,
connect (Constantl.y,
connect (Sinel.y,
(

end IdealBike;

Torque2.tau) ;
Torquel.tau);
connect (IdealRollingWheel2. frame_a,
connect (IdealRollingWheell.frame_a,

DiamondFramel.flange_steering) ;
DiamondFramel.flange_rw) ;

DiamondFramel.frame_rw) ;
DiamondFramel.frame_fw) ;

Visualization

Constant1 freqHz=0.5
—— — /\/ Documentation
= ’2 g E s o
§ a 3 Information
This example presents the model of a bicycle.
y world The joints of the bicycle are frictionless and the
4 wheels are ideally rolling. The bicycle is
uncontrolled, but due to its initial velocity it is
:X self-stabilizing. Within a certain a range of
driving velocity a bicycle is stable.
Ro... A bicycle has 7 degrees of freedom on positional
level and 3 degrees of freedom on velocity level.

[...]
phi (stateSelect =
if chooseStates
then
StateSelect.always
else
StateSelect.default
)I
[...]

Diagram

System hints

© Dirk Zimmer, July 2007, Slide 4

Classification of aspects

Following classification of aspects seems appropriate for
Modelica

— Physical modeling: The modeling of the physical processes based
on differential-algebraic equations (DAESs).

— System hints: The supply of hints or information for the simulation-
system.

— 3D Visualization: Description of corresponding 3D-entities that
enable a visualization of the models.

— GUI-Representation: Description of an iconographic
representation for the GUI of the modeling environment.

— Documentation: Additional documentation that addresses to
potential users or developers.

© Dirk Zimmer, July 2007, Slide 5

Code - Analysis

« We analyzed the distribution of these aspects for three
exemplary models.

« The examples originate from the Modelica-Standard-Library
« All formatting has been removed.

« The remaining characters have been manually categorized
and then counted.

« Let us see the results...

© Dirk Zimmer, July 2007, Slide 6

Code - Analysis

A complete example:
Modelica.Thermal.
FluidHeatFlow.Examples.
PunpAndValve

Ambient1 Ambient2

|dealPump1 Valve1
G

HeatFlow [7S

A
HeatCapacitor1

Pump and Valve

53%

34%

W Physical Modeling E System Hints [0 3D Visualization
[0 GUI-Representation & Documentation

© Dirk Zimmer, July 2007, Slide 7

Code - Analysis

e A component model:
Modelica.Electrical.
Analog.Semiconductors.
PMOS

PMOS

33%

0%
0%

26%

B Physical Modeling B System Hints 03D Visualization
O GUI-Representation L4 Documentation

© Dirk Zimmer, July 2007, Slide 8

Code - Analysis

e A basic component:
Modelica.Mechanics. Translation

MultiBody.Parts.
FixedTranslation

r B Physical Modeling @ System Hints B8 3D Visualization
O GUI-Representation 4 Documentation

© Dirk Zimmer, July 2007, Slide 9

Code - Analysis: Conclusions

e The primary aspect cannot be stated to be predominant.

e The discussion about Modelica and other EOO-languages is
often constrained to its primary aspect.

e The disregard of other modeling aspects cannot be justified.

e The ability to cope with multiple aspects has become a
definite prerequisite for many modern modeling languages.

© Dirk Zimmer, July 2007, Slide 10

Multiple Aspects in Modelica

e Certain modeling aspects are supported by keywords.
For instance: stateSelect, fixed

* Modelica introduced the concept of annotations. These items
are placed alongside the definition of models and the
declaration of members.

* Example:

Capacitor C1l(C=cl) “Main Capacitor”

annotation (extent=[50,-30; 70,-107,
rotation=270) ;

* Since annotations tend to inflate the modeling code, they are
mostly hidden by the editors

© Dirk Zimmer, July 2007, Slide 11

Situation in Modelica

e Overview on the current mixture of data-representation:

— The physics of a model is naturally described by DAEs

— Hints or information for the simulation-system are mostly also
part of the main Modelica language but some of them have to be
included in special annotations.

— Information that is used by the GUI is included in annotations.
But also information from textual descriptions is used.

— The description of 3D-visualization is done by dummy-models.

— Documentation is extracted from the textual descriptions, but
further documentation shall be provided by integrating HTML-
code into a special annotation. Other annotations store
information about the author and the library version.

© Dirk Zimmer, July 2007, Slide 12

Current Downfalls

There is an evident lack of concept.

Only pre-thought functionalities are applicable.

The functionalities are mostly not customizable.

The code-visibility is selected based on syntax not on semantics.

The hiding of annotations hinders the editing.

© Dirk Zimmer, July 2007, Slide 13

Multiple aspects in Sol.

SO,

* Solis alanguage conceived for research purposes.
e [t aims to enable the future handling of variable-structure systems.
e Itowns a relatively simple grammar that is similar to Modelica.

e Fundamentals have been reviewed in the language-design of Sol. New
methods have been included in the language.

e These methods aid also the modeling of multiple aspects.

e The Sol project is supported by the Swiss National Science Foundation.

© Dirk Zimmer, July 2007, Slide 14

Multiple aspects in Sol.

e Starting from an example, I will present language constructs that meet
the following requirements:

1. We shall have an open and transparent interface for each aspect.
- Environment-packages

2. A convienient notation shall be provided.
->Anonymous declarations

3. The modeler shall be enabled to form semantic entities.
->Sections

4. The solution should well integrate into complex object-oriented
model-structures.
<> Referencing mechanisms

© Dirk Zimmer, July 2007, Slide 15

Sol: The example

e The model consists of an engine
that drives a flywheel. In the G\D‘ 004®

middle there is a simple gear box.

Engine Gear Flywheel
e The simulation yields to the plot on ®
the right. It displays the angular ol
velocity.
e The model contains a structural or

change: Reaching a threshold
speed, causes the switch to a
simpler engine model.

[s7]
0 s s . .
0 [s] 2 4 6 8 10

© Dirk Zimmer, July 2007, Slide 16

Sol: The example

model Machine

implementation:
static Mechanics.FlyWheel F{inertia<<l};
static Mechanics.Gear G{ratio<<1l.8};
dynamic Mechanics.Engine2 E {meanT<<10};

connection cl(a << G.f2, b << F.f);
connection c2(a << E.f, b << G.£f1);

when F.w > 40 then
E <- Mechanics.Enginel{meanT << 10};

end;

end Machine;

© Dirk Zimmer, July 2007, Slide 17

Sol: The example

model Machine

implementation:

static Mechanics.FlyWheel F{inertia<<l};
static Mechanics.Gear G{ratio<<1l.8};
dynamic Mechanics.Engine2 E {meanT<<10};

Declaration of
Components

connection cl(a << G.f2, b << F.f);
connection c2(a << E.f, b << G.£f1);

when F.w > 40 then
E <- Mechanics.Enginel{meanT << 10};

end;

end Machine;

© Dirk Zimmer, July 2007, Slide 18

Sol: The example

model Machine

implementation:
static Mechanics.FlyWheel F{inertia<<l};
static Mechanics.Gear G{ratio<<1l.8};
dynamic Mechanics.Engine2 E {meanT<<10};

connection cl(a << G.f2, b << F.f);
connection c2(a << E.f, b << G.£f1);

Connections

when F.w > 40 then
E <- Mechanics.Enginel{meanT << 10};
end;

end Machine;

© Dirk Zimmer, July 2007, Slide 19

Sol: The example

model Machine

implementation:
static Mechanics.FlyWheel F{inertia<<l};
static Mechanics.Gear G{ratio<<1l.8};
dynamic Mechanics.Engine2 E {meanT<<10};

connection cl(a << G.f2, b << F.f);
connection c2(a << E.f, b << G.£f1);

when F.w > 40 then
E <- Mechanics.Enginel{meanT << 10};
end;

Event that triggers
a structural change

end Machine;

© Dirk Zimmer, July 2007, Slide 20

Sol: Environment-Packages

* Many modeling aspects refer to an external environment that is
supposed to process the exposed information.

* The example presents a package of models that can be used to
store information for the documentation of arbitrary models.

* The keyword environment does specify that the corresponding
models address the environment and are therefore not self-
contained.

* Environment-packages merely offer an interface.

e The concrete semantics is finally determined by the environment
itself.

» Different environments may have different interpretations.

© Dirk Zimmer, July 2007, Slide 21

Sol: Environment-Packages

environment package Documentation

model Author
interface:

parameter string name;
end Author;

model Version
interface:

parameter string v;
end Version;

model ExternalDoc
interface:
parameter string fname;

end ExternalDoc;

end Documentation

© Dirk Zimmer, July 2007, Slide 22

Sol: Environment-Packages

Defintion of an

environment package Documentation .
environment package

model Author
interface:

parameter string name;
end Author;

model Version
interface:

parameter string v;
end Version;

model ExternalDoc
interface:
parameter string fname;

end ExternalDoc;

end Documentation

© Dirk Zimmer, July 2007, Slide 23

Sol: Environment-Packages

environment package Documentation

model Author
interface:

parameter string name;
end Author;

»Dummy model*‘ that
enables the specification
of the author

model Version
interface:

parameter string v;
end Version;

model ExternalDoc
interface:
parameter string fname;

end ExternalDoc;

end Documentation

© Dirk Zimmer, July 2007, Slide 24

Sol: Anonymous Declarations

e To take use of an environment package we have to declare
instances of its models

* In Sol, any model can be declared anonymously anywhere in
the implementation.

 This way, we can conveniently create the documentation for
our model.

© Dirk Zimmer, July 2007, Slide 25

Sol: Anonymous Declarations

model Machine
implementation:

[..]

when F.w > 40 then

E <- Mechanics.Enginel{meanT << 10 };
end;

Documentation.Author {name<<"DirkZimmer"};
Documentation.Version{v << "1.0");
Documentation.ExternalDoc{fname<<"MachineDoc.html"};

end Machine;

© Dirk Zimmer, July 2007, Slide 26

Sol: Sections

. Sections can be defined using an arbitrary package name.
. Sections are a pure grouping mechanism and nothing more.
. Sections incorporate three advantages:

1. Code can be structured into semantic entities.

2. Sections add convenience, since the sub-models of the
corresponding package can now be directly accessed.

3. Sections enable an intuitive control of visibility.

© Dirk Zimmer, July 2007, Slide 27

Sol: Sections

model Machine
implementation:
[...]
when F.w > 40 then
E <- Mechanics.Enginel {meanT << 10 };
end;

section Documentation:
Author {name << "Dirk Zimmer"};
Version{v << "1.0"};
ExternalDoc{fname<<"MachineDoc.html"};
end;

section Simulator:
IntegrationTime{t << 10.0};
IntegrationMethod{method<<"euler",
step << "fixed", value << 0.01};
end;

end Machine;

© Dirk Zimmer, July 2007, Slide 28

Sol: Sections

model Machine
implementation:
[...]
when F.w > 40 then
E <- Mechanics.Enginel {meanT << 10 };

end;

section Documentation: L.
Author{name << "Dirk Zimmer"}; 'rhedocun““naPOPlS
Version{v << "1.0"}; now grouped within a
ExternalDoc{fname<<"MachineDoc.html"}; section.

end;

section Simulator:
IntegrationTime{t << 10.0};
IntegrationMethod{method<<"euler",
step << "fixed", value << 0.01};
end;

end Machine;

© Dirk Zimmer, July 2007, Slide 29

Sol: Sections

model Machine
implementation:
[...]
when F.w > 40 then
E <- Mechanics.Enginel {meanT << 10 };
end;

section Documentation:

Author {name << "Dirk Zimmer"};
Version{v << "1.0"};
ExternalDoc{fname<<"MachineDoc.html"};

end;

section Simulator:
IntegrationTime{t << 10.0};
IntegrationMethod{method<<"euler",
step << "fixed", value << 0.01};
end;

end Machine;

The writing gets more
convenient.

© Dirk Zimmer, July 2007, Slide 30

Sol: Sections

model Machine
implementation:
[...]
when F.w > 40 then
E <- Mechanics.Enginel {meanT << 10 };
end;

section Documentation:
Author {name << "Dirk Zimmer"};
Version{v << "1.0"};
ExternalDoc{fname<<"MachineDoc.html"};
end;

section Simulator:

IntegrationTime{t << 10.0}; Another section

IntegrationMethod{method<<"euler", ibrsyﬂfnlhnns."
step << "fixed", value << 0.01};
end;

end Machine;

© Dirk Zimmer, July 2007, Slide 31

Sol: Sections

model Machine
implementation:
[...]
when F.w > 40 then
E <- Mechanics.Enginel {meanT << 10 };
end;

section Documentation:
Author {name << "Dirk Zimmer"};
Version{v << "1.0"};
ExternalDoc{fname<<"MachineDoc.html"};
end;

+ section Simulator:

...that may be hidden
by the editor

end Machine;

© Dirk Zimmer, July 2007, Slide 32

Sol: Referencing

@ﬂ_ OO

Engine Gear Flywheel

e This solution is feasible for simple applications.
 However, providing a GUI is more complex.
e The icons of a model-diagram relate to specific instances.

e Thus, we need to be able to refer on other model instances.

© Dirk Zimmer, July 2007, Slide 33

Sol: Referencing

e To refer on other model-instances Sol offers two solutions:

1. Member models: These are models defined in the interface
of a model and that are bounded to the corresponding
instance of its top-model. Thus, they may address the top-
model’s members.

2. First-class status for any model instance: This means that
instances of models can be treated as basic variables.
Hence, they might be passed as parameters or they are
dynamically transmitted.

e The demonstration example uses both techniques.

© Dirk Zimmer, July 2007, Slide 34

Sol: Demonstration

Demo

© Dirk Zimmer, July 2007, Slide 35

Summary

e Letus review the four language constructs:

1. Environment-packages that enable the aspect-specific
declaration of interfaces.

2. Anonymous declarations of model instances.

3. Sections can be used to form semantic entities and control
visibility.

4. Referencing mechanisms between model-instances. (In
Sol, these mechanisms are provided by giving model-

instances a first class status and enabling so-called member-
models.)

© Dirk Zimmer, July 2007, Slide 36

Conclusions

- Environment packages provide a transparent interface.

« The interface is customizable

« Anonymous declarations enable a convenient usage

« User-defined sections help to organize the model.

« The text-filtering criteria are based on semantic entities.

« The embedment into an existing object-oriented framework

enables a uniform approach for a wider range of modeling
aspects.

© Dirk Zimmer, July 2007, Slide 37

Conclusions

Main conclusion:

- The ability of the language to help and to extend itself by
its own means has been improved.

« Further development is now possible within the language
and does not require a constant update and growth of the
language definition.

« Important are not the precise grammar construct. Important
is to meet the four requirements they have been built for.
This way the proposed solution can be adopted for other
languages.

© Dirk Zimmer, July 2007, Slide 38

Questions?

