
Multi-Aspect Modeling

in Equation-Based Languages

Author: Dirk Zimmer

ETH Zürich, Institute of Computational Science, Department of Computer Science

EOOLT 2008, Cyprus

Physical

Modeling

System Hints3D

Visualization

GUI-

Representation
Documentation

© Dirk Zimmer, July 2007, Slide 2

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich

• Motivation

• Classification of aspects

• Multiple aspects in Modelica

• Current downfalls

• Improved handling in SOL

• Demonstration

• Conclusions

Overview

© Dirk Zimmer, July 2007, Slide 3

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich

• Contemporary equation-based modeling languages are embedded in

modeling and simulation environments that feature various types of

data-representation:

– Icons for the graphical user interface (GUI)

– 3D-Visualization

– Sound-Module

– Auto-Documentation

– etc…

• Thus, the corresponding models contain more information than what

is needed for the actual physical model.

• Nowadays, a modeler has to cope with many multiple aspects.

Motivation

© Dirk Zimmer, July 2007, Slide 4

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Motivation: Example

Physical modeling

Information

This example presents the model of a bicycle.

The joints of the bicycle are frictionless and the

wheels are ideally rolling. The bicycle is

uncontrolled, but due to its initial velocity it is

self-stabilizing. Within a certain a range of

driving velocity a bicycle is stable.

A bicycle has 7 degrees of freedom on positional

level and 3 degrees of freedom on velocity level.

Diagram

Documentation

System hints

w orld

x

y

T
o
rq

u
e
1

ta
u

Constant1

k=0

T
o
rq

u
e
2

ta
u

IdealRollin...IdealRollin...Ro...

Sine1

freqHz=0.5

equation

connect(Torque1.flange_b, DiamondFrame1.flange_steering);

connect(Torque2.flange_b, DiamondFrame1.flange_rw);

connect(Constant1.y, Torque2.tau);

connect(Sine1.y, Torque1.tau);

connect(IdealRollingWheel2.frame_a, DiamondFrame1.frame_rw);

connect(IdealRollingWheel1.frame_a, DiamondFrame1.frame_fw);

end IdealBike;

Visualization

[…]

phi(stateSelect =

if chooseStates

then

StateSelect.always

else

StateSelect.default

),

[…]

© Dirk Zimmer, July 2007, Slide 5

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Classification of aspects

• Following classification of aspects seems appropriate for
Modelica

– Physical modeling: The modeling of the physical processes based
on differential-algebraic equations (DAEs).

– System hints: The supply of hints or information for the simulation-
system.

– 3D Visualization: Description of corresponding 3D-entities that
enable a visualization of the models.

– GUI-Representation: Description of an iconographic
representation for the GUI of the modeling environment.

– Documentation: Additional documentation that addresses to
potential users or developers.

© Dirk Zimmer, July 2007, Slide 6

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Code - Analysis

• We analyzed the distribution of these aspects for three
exemplary models.

• The examples originate from the Modelica-Standard-Library

• All formatting has been removed.

• The remaining characters have been manually categorized
and then counted.

• Let us see the results…

© Dirk Zimmer, July 2007, Slide 7

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Code - Analysis

Pump and Valve

53%

1%

0%

34%

12%

Physical Modeling System Hints 3D Visualization

GUI-Representation Documentation

• A complete example:

Modelica.Thermal.

FluidHeatFlow.Examples.

PunpAndValve

© Dirk Zimmer, July 2007, Slide 8

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Code - Analysis

PMOS

33%

0%

0%

26%

41%

Physical Modeling System Hints 3D Visualization

GUI-Representation Documentation

D

G S

B

• A component model:

Modelica.Electrical.

Analog.Semiconductors.

PMOS

© Dirk Zimmer, July 2007, Slide 9

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Code - Analysis

Translation

14%

3%

26%

44%

13%

Physical Modeling System Hints 3D Visualization

GUI-Representation Documentation

x

y

r

x

y

frame_a frame_b

• A basic component:

Modelica.Mechanics.

MultiBody.Parts.

FixedTranslation

© Dirk Zimmer, July 2007, Slide 10

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Code - Analysis: Conclusions

• The primary aspect cannot be stated to be predominant.

• The discussion about Modelica and other EOO-languages is
often constrained to its primary aspect.

• The disregard of other modeling aspects cannot be justified.

• The ability to cope with multiple aspects has become a
definite prerequisite for many modern modeling languages.

© Dirk Zimmer, July 2007, Slide 11

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Multiple Aspects in Modelica

• Certain modeling aspects are supported by keywords.
For instance: stateSelect, fixed

• Modelica introduced the concept of annotations. These items
are placed alongside the definition of models and the
declaration of members.

• Example:

Capacitor C1(C=c1) “Main Capacitor”

annotation (extent=[50,-30; 70,-10],
rotation=270);

• Since annotations tend to inflate the modeling code, they are
mostly hidden by the editors

© Dirk Zimmer, July 2007, Slide 12

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Situation in Modelica

• Overview on the current mixture of data-representation:

– The physics of a model is naturally described by DAEs

– Hints or information for the simulation-system are mostly also

part of the main Modelica language but some of them have to be

included in special annotations.

– Information that is used by the GUI is included in annotations.

But also information from textual descriptions is used.

– The description of 3D-visualization is done by dummy-models.

– Documentation is extracted from the textual descriptions, but

further documentation shall be provided by integrating HTML-

code into a special annotation. Other annotations store

information about the author and the library version.

© Dirk Zimmer, July 2007, Slide 13

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Current Downfalls

• There is an evident lack of concept.

• Only pre-thought functionalities are applicable.

• The functionalities are mostly not customizable.

• The code-visibility is selected based on syntax not on semantics.

• The hiding of annotations hinders the editing.

© Dirk Zimmer, July 2007, Slide 14

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich

SOL

Multiple aspects in Sol.

• Sol is a language conceived for research purposes.

• It aims to enable the future handling of variable-structure systems.

• It owns a relatively simple grammar that is similar to Modelica.

• Fundamentals have been reviewed in the language-design of Sol. New
methods have been included in the language.

• These methods aid also the modeling of multiple aspects.

• The Sol project is supported by the Swiss National Science Foundation.

SOL

© Dirk Zimmer, July 2007, Slide 15

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Multiple aspects in Sol.

• Starting from an example, I will present language constructs that meet
the following requirements:

1. We shall have an open and transparent interface for each aspect.
����Environment-packages

2. A convienient notation shall be provided.
����Anonymous declarations

3. The modeler shall be enabled to form semantic entities.
����Sections

4. The solution should well integrate into complex object-oriented
model-structures.
����Referencing mechanisms

© Dirk Zimmer, July 2007, Slide 16

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Sol: The example

• The model consists of an engine
that drives a flywheel. In the
middle there is a simple gear box.

• The simulation yields to the plot on
the right. It displays the angular
velocity.

• The model contains a structural
change: Reaching a threshold
speed, causes the switch to a
simpler engine model.

Engine Gear Flywheel

© Dirk Zimmer, July 2007, Slide 17

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Sol: The example

model Machine

implementation:

static Mechanics.FlyWheel F{inertia<<1};

static Mechanics.Gear G{ratio<<1.8};

dynamic Mechanics.Engine2 E {meanT<<10};

connection c1(a << G.f2, b << F.f);

connection c2(a << E.f, b << G.f1);

when F.w > 40 then

E <- Mechanics.Engine1{meanT << 10};

end;

end Machine;

© Dirk Zimmer, July 2007, Slide 18

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Sol: The example

model Machine

implementation:

static Mechanics.FlyWheel F{inertia<<1};

static Mechanics.Gear G{ratio<<1.8};

dynamic Mechanics.Engine2 E {meanT<<10};

connection c1(a << G.f2, b << F.f);

connection c2(a << E.f, b << G.f1);

when F.w > 40 then

E <- Mechanics.Engine1{meanT << 10};

end;

end Machine;

Declaration of

Components

© Dirk Zimmer, July 2007, Slide 19

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Sol: The example

model Machine

implementation:

static Mechanics.FlyWheel F{inertia<<1};

static Mechanics.Gear G{ratio<<1.8};

dynamic Mechanics.Engine2 E {meanT<<10};

connection c1(a << G.f2, b << F.f);

connection c2(a << E.f, b << G.f1);

when F.w > 40 then

E <- Mechanics.Engine1{meanT << 10};

end;

end Machine;

Connections

© Dirk Zimmer, July 2007, Slide 20

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Sol: The example

model Machine

implementation:

static Mechanics.FlyWheel F{inertia<<1};

static Mechanics.Gear G{ratio<<1.8};

dynamic Mechanics.Engine2 E {meanT<<10};

connection c1(a << G.f2, b << F.f);

connection c2(a << E.f, b << G.f1);

when F.w > 40 then

E <- Mechanics.Engine1{meanT << 10};

end;

end Machine;

Event that triggers

a structural change

© Dirk Zimmer, July 2007, Slide 21

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Sol: Environment-Packages

• Many modeling aspects refer to an external environment that is
supposed to process the exposed information.

• The example presents a package of models that can be used to
store information for the documentation of arbitrary models.

• The keyword environment does specify that the corresponding
models address the environment and are therefore not self-
contained.

• Environment-packages merely offer an interface.

• The concrete semantics is finally determined by the environment
itself.

• Different environments may have different interpretations.

© Dirk Zimmer, July 2007, Slide 22

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Sol: Environment-Packages

environment package Documentation

model Author

interface:

parameter string name;

end Author;

model Version

interface:

parameter string v;

end Version;

model ExternalDoc

interface:

parameter string fname;

end ExternalDoc;

end Documentation

© Dirk Zimmer, July 2007, Slide 23

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Sol: Environment-Packages

environment package Documentation

model Author

interface:

parameter string name;

end Author;

model Version

interface:

parameter string v;

end Version;

model ExternalDoc

interface:

parameter string fname;

end ExternalDoc;

end Documentation

Defintion of an

environment package

© Dirk Zimmer, July 2007, Slide 24

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Sol: Environment-Packages

environment package Documentation

model Author

interface:

parameter string name;

end Author;

model Version

interface:

parameter string v;

end Version;

model ExternalDoc

interface:

parameter string fname;

end ExternalDoc;

end Documentation

„Dummy model“ that

enables the specification

of the author

© Dirk Zimmer, July 2007, Slide 25

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Sol: Anonymous Declarations

• To take use of an environment package we have to declare

instances of its models

• In Sol, any model can be declared anonymously anywhere in

the implementation.

• This way, we can conveniently create the documentation for

our model.

© Dirk Zimmer, July 2007, Slide 26

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Sol: Anonymous Declarations

model Machine

implementation:

[…]

when F.w > 40 then

E <- Mechanics.Engine1{meanT << 10 };

end;

Documentation.Author{name<<"DirkZimmer"};

Documentation.Version{v << "1.0");

Documentation.ExternalDoc{fname<<"MachineDoc.html"};

end Machine;

© Dirk Zimmer, July 2007, Slide 27

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Sol: Sections

• Sections can be defined using an arbitrary package name.

• Sections are a pure grouping mechanism and nothing more.

• Sections incorporate three advantages:

1. Code can be structured into semantic entities.

2. Sections add convenience, since the sub-models of the

corresponding package can now be directly accessed.

3. Sections enable an intuitive control of visibility.

© Dirk Zimmer, July 2007, Slide 28

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Sol: Sections

model Machine

implementation:

[…]

when F.w > 40 then

E <- Mechanics.Engine1{meanT << 10 };

end;

section Documentation:

Author{name << "Dirk Zimmer"};

Version{v << "1.0"};

ExternalDoc{fname<<"MachineDoc.html"};

end;

section Simulator:

IntegrationTime{t << 10.0};

IntegrationMethod{method<<"euler",

step << "fixed", value << 0.01};

end;

end Machine;

© Dirk Zimmer, July 2007, Slide 29

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Sol: Sections

model Machine

implementation:

[…]

when F.w > 40 then

E <- Mechanics.Engine1{meanT << 10 };

end;

section Documentation:

Author{name << "Dirk Zimmer"};

Version{v << "1.0"};

ExternalDoc{fname<<"MachineDoc.html"};

end;

section Simulator:

IntegrationTime{t << 10.0};

IntegrationMethod{method<<"euler",

step << "fixed", value << 0.01};

end;

end Machine;

The documentation is

now grouped within a

section.

© Dirk Zimmer, July 2007, Slide 30

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Sol: Sections

model Machine

implementation:

[…]

when F.w > 40 then

E <- Mechanics.Engine1{meanT << 10 };

end;

section Documentation:

Author{name << "Dirk Zimmer"};

Version{v << "1.0"};

ExternalDoc{fname<<"MachineDoc.html"};

end;

section Simulator:

IntegrationTime{t << 10.0};

IntegrationMethod{method<<"euler",

step << "fixed", value << 0.01};

end;

end Machine;

The writing gets more

convenient.

© Dirk Zimmer, July 2007, Slide 31

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Sol: Sections

model Machine

implementation:

[…]

when F.w > 40 then

E <- Mechanics.Engine1{meanT << 10 };

end;

section Documentation:

Author{name << "Dirk Zimmer"};

Version{v << "1.0"};

ExternalDoc{fname<<"MachineDoc.html"};

end;

section Simulator:

IntegrationTime{t << 10.0};

IntegrationMethod{method<<"euler",

step << "fixed", value << 0.01};

end;

end Machine;

Another section

for system hints …

© Dirk Zimmer, July 2007, Slide 32

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Sol: Sections

model Machine

implementation:

[…]

when F.w > 40 then

E <- Mechanics.Engine1{meanT << 10 };

end;

section Documentation:

Author{name << "Dirk Zimmer"};

Version{v << "1.0"};

ExternalDoc{fname<<"MachineDoc.html"};

end;

+ section Simulator:

end Machine;

…that may be hidden

by the editor

© Dirk Zimmer, July 2007, Slide 33

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Sol: Referencing

• This solution is feasible for simple applications.

• However, providing a GUI is more complex.

• The icons of a model-diagram relate to specific instances.

• Thus, we need to be able to refer on other model instances.

Engine Gear Flywheel

© Dirk Zimmer, July 2007, Slide 34

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Sol: Referencing

• To refer on other model-instances Sol offers two solutions:

1. Member models: These are models defined in the interface

of a model and that are bounded to the corresponding

instance of its top-model. Thus, they may address the top-

model’s members.

2. First-class status for any model instance: This means that

instances of models can be treated as basic variables.

Hence, they might be passed as parameters or they are

dynamically transmitted.

• The demonstration example uses both techniques.

© Dirk Zimmer, July 2007, Slide 35

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Sol: Demonstration

Demo

© Dirk Zimmer, July 2007, Slide 36

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Summary

• Let us review the four language constructs:

1. Environment-packages that enable the aspect-specific
declaration of interfaces.

2. Anonymous declarations of model instances.

3. Sections can be used to form semantic entities and control
visibility.

4. Referencing mechanisms between model-instances. (In
Sol, these mechanisms are provided by giving model-
instances a first class status and enabling so-called member-
models.)

© Dirk Zimmer, July 2007, Slide 37

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Conclusions

• Environment packages provide a transparent interface.

• The interface is customizable

• Anonymous declarations enable a convenient usage

• User-defined sections help to organize the model.

• The text-filtering criteria are based on semantic entities.

• The embedment into an existing object-oriented framework

enables a uniform approach for a wider range of modeling

aspects.

© Dirk Zimmer, July 2007, Slide 38

Department of Computer Science

Institute of Computational Science

ETH ETH ETH ETH ZZZZürich
Conclusions

Main conclusion:

• The ability of the language to help and to extend itself by

its own means has been improved.

• Further development is now possible within the language

and does not require a constant update and growth of the

language definition.

• Important are not the precise grammar construct. Important

is to meet the four requirements they have been built for.

This way the proposed solution can be adopted for other

languages.

Questions?

