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The Software-Hardware Integration Problem

« At the early stages of system development, many decisions must be
made about how the system will be realised as a combination of
Software and Hardware

 Requirements of the system at these early stages lack quantified
and temporal information so it is hard to make an informed decision

« Changing the partioning of software / hardware or how they interact
later in development can be time-consuming and costly

« There is a potential for errors and incompatibility to be introduced as
software/hardware specifications are created independently
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Example: Model of Automated Train Protection System

An ATP System monitors train position and speed, and
may apply brakes if the driver does not react in time

signalPosition,
signalValue Train Tracks
Signal Sensors : L
signalPosition, signalValue

sensor values

desired

speed Train speed Driver
position, speed desiredSpeed, reset

apply brake

ATP System
(BE Model)

reset

<
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The Software-Hardware Integration Problem

Starting from System Requirements

Requirement  Description

R1 The ATP system is located on board the train. It involves a central controller and five boundary subsystems
that manage the sensors, speedometer, brakes, alarm and a reset mechanism.

R2 The sensors are attached to the side of the train and detect information on the approach to track-side
signals, i.e. they detect what the signal is displaying to the train driver.

R3 In order to reduce the effects of component failure three sensors are used. Each sensor generates a value in
the range 0 to 3, where 0, 1 and 2 denote the danger, caution, and proceed signals respectively. The fourth
sensor value, i.e. 3, is generated if an undefined signal is detected, e.g. may correspond to noise between
the signal and the sensor.

R4 The sensor value returned to the ATP controller is calculated as the majority of the three sensor readings.
If there does not exist a majority then an undefined value is returned to the ATP controller.

R5 If a proceed signal is returned to the ATP controller then no action is taken with respect to the train’s
brakes.

R6 If a caution signal is returned to the ATP controller then the alarm is enabled within the driver’s cab.

Furthermore, once the alarm has been enabled, if the speed of the train is not observed to be decreasing
then the ATP controller activates the train’s braking system.

R7 In the case of a danger signal being returned to the ATP controller, the braking system is immediately
activated and the alarm is enabled. Once enabled, the alarm is disabled if a proceed signal is subsequently
returned to the ATP controller.

RS Note that if the braking system is activated then the ATP controller ignores all sensor input until the system
has been reset.

R9 If enabled, the reset mechanism deactivates the train’s brakes and disables the alarm.

Table 1. Requirements of the ATP system
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The Software-Hardware Integration Problem

Interaction with Sensors ...

Requirement  Description

R1 The ATP system is located on board the train. It involves a central controller and five boundary subsystems
that manage the sensors, speedometer, brakes, alarm and a reset mechanism.
R2 The sensors are attached to the side of the train and detect information on the approach to track-side
signals, i.e. they detect what the signal is displaying to the train driver. ”OW Ofteﬂ
R3 In order to reduce the effects of component failure three sensors are used. Each sensor generates a value in d oes t“,’s nee d
the range 0 to 3, where 0, 1 and 2 denote the danger, caution, and proceed signals respectively. The fourth
sensor value, i.e. 3, is generated if an undefined signal is detected, e.g. may correspond to noise between tO 60 caec&ed?
the signal and the sensor.
R4 The sensor value returned to the ATP controller is calculated as the majority of the three sensor readings.
If there does not exist a majority then an undefined value is returned to the ATP controller.
R5 If a proceed signal is returned to the ATP controller then no action is taken with respect to the train,
brakes.
R6 If a caution signal is returned to the ATP controller then the alarm is enakbl

Furthermore, once the alarm has been enabled, if the speed of the frain i
then the ATP controller activates the train’s braking system.

R7 In the case of a danger signal being returned to the ATP controller, the braking system is immediately \
activated and the alarm is enabled. Once enabled, the alarm is disabled if a proceed signal is subsequently ’
returned to the ATP controller. DQCI’Q“SI“Q

RS Note that if the braking system is activated then the ATP controller ignores all sensor input until the system (5y aOW mucﬁ?
has been reset.

RO If enabled, the reset mechanism deactivates the train’s brakes and disables the alarm.

Table 1. Requirements of the ATP system
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The Software-Hardware Integration Problem

Interaction with Actuators ...

Whaat regsponse

acceptalble?

Requirement  Description

R1 The ATP system is located on board the train. It involves a central controller and five boundary subsystems
that manage the sensors, speedometer, brakes, alarm and a reset mechanism.

R2 The sensors are attached to the side of the train and detect information on the approach to track-side
signals, i.e. they detect what the signal is displaying to the train driver.

R3 In order to reduce the effects of component failure three sensors are used. Each sensor generates a value in
the range 0 to 3, where 0, 1 and 2 denote the danger, caution, and proceed signals respectively. The fourth
sensor value, i.e. 3, is generated if an undefined signal is detected, e.g. may correspond to noise between
the signal and the sensor.

R4 The sensor value returned to the ATP controller is calculated as the majority of the three sensor readings.
If there does not exist a majority then an undefined value is returned to the ATP controller.

R5 If a proceed signal is returned to the ATP controller then no action is taken with respect to the train’s
brakes.

R6 If a caution signal is returned to the ATP controller then the alarm is enabled within the driver’s cab. C#q€ IS I ea(«"waa“’y
Furthermore, once the alarm has been enabled, if the speed of the train is not observed to be decreasing
then the ATP controller activates the train’s braking system.

R7 In the case of a danger signal being returned to the ATP controller, the braking system fi mmedlately /
activated and the alarm is enabled. Once enabled, the alarm is disabled if a proceed signal is sabseguentiy
returned to the ATP controller.

RS Note that if the braking system is activated then the ATP controller ignores all sensor input until the system
has been reset.

R9 If enabled, the reset mechanism deactivates the train’s brakes and disables the alarm.

Wi
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Table 1. Requirements of the ATP system
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The Software-Hardware Integration Problem

Software / Hardware Partitioning ...

Requirement  Description

R1 The ATP system is located on board the train. It involves a central controller and five boundary subsystems
that manage the sensors, speedometer, brakes, alarm and a reset mechanism.

Perform in

R2 The sensors are attached to the side of the train and detect information on the approach to track-side
signals, i.e. they detect what the signal is displaying to the train driver. softwa‘,e
R3 In order to reduce the effects of component failure three sensors are used. Each sensor generates a value in
the range 0 to 3, where 0, 1 and 2 denote the danger, caution, and proceed signals respectively. The fourth or
sensor value, i.e. 3, is generated if an undefined signal is detected, e.g. may correspond to noise betwee Har dw are?
the signal and the sensor. ]
R4 The sensor value returned to the ATP controller is calculated a@ of the three sensor readings.
If there does not exist a majority then an undefined value is returnedo-e-AdP-esateter
R5 If a proceed signal is returned to the ATP controller then no action is taken with respect to the train’s
brakes.
R6 If a caution signal is returned to the ATP controller then the alarm is enabled within the driver’s cab.

Furthermore, once the alarm has been enabled, if the speed of the train is not observed to be decreasing
then the ATP controller activates the train’s braking system.

R7 In the case of a danger signal being returned to the ATP controller, the braking system is immediately
activated and the alarm is enabled. Once enabled, the alarm is disabled if a proceed signal is subsequently
returned to the ATP controller.

RS Note that if the braking system is activated then the ATP controller ignores all sensor input until the system
has been reset.

RO If enabled, the reset mechanism deactivates the train’s brakes and disables the alarm.

Table 1. Requirements of the ATP system
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The Software-Hardware Integration Problem

The Environment in which the system will exist ...

Requirement  Description o —
R1 The ATP system is locate@.on board the train.
that manage the sensors, :

involves a central controller and five boundary subsystems

terorares, alarm and a reset mechanism.

R2 The sensors are attacheg to th
signals, i.e. they detect pvhat the

side of the train and detect information on the approach to track-side
anal is displaying to the train driver.

R3 In order to reduce the gffects of co
the range 0 to 3, whege 0. 1 and 2 de
sensor value, i.e. 3, js generated if an
the signal and the sgnsor.

R4 The sensor valuyetumed to the ATP cont?&zr is calculated as the majority of the three sensor readings.

How far apart
are the signals?

If there does notxist a majority then an und{ined value is returned to the ATP controller.

R5 If a proceed signal is returned to the ATP confgoller then no action is taken with respect to the train’s
brakes.
R6 If a caution gignal is returned to the ATP controllgr then the alarm is enabled within the driver’s cab.

Furthermorg, once the alarm has been enabled, if the\speed of the train is not observed to be decreasing
then the AYP controller activates the train’s braking sys¥m.

R7 In the cage of a danger signal being returned to the ATR\controller, the braking system is immediately
activatedfand the alarm is enabled. Once enabled, the alarm\g disabled if a proceed signal is subsequently
returneg to the ATP controller.

RS Note tfiat if the braking system is activated then the ATP controll®rignores all sensor input until the system
has bgen reset.
R9 If efabled, the reset mechanism deactivates the train’s brakes and dk{bles the alarm.
7

Table 1. Requirements of the ATP system \

Whaat are the Wiél it 6e deployed on
characterigtics of the train? many different types of traing?
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A Brief Introduction to Behavior Engineering

Behavior Engineering for Requirements Analysis

« 5 Large-scale industry projects

— In Defence, Transportation, Banking and Finance
— Between 800-1250 requirements

 All previously reviewed with respective organisations
iInternal review processes

« Defect detection rate approximately 2 to 3 times that of
traditional ad-hoc, checklist-based, and scenario-based
reading techniques reported in Porter, 1998.

Requirements Evaluation Using Behavior Trees

Findings from Industry

Daniel Powell
http://aswec07.cs.latrobe.edu.au/5.zip
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Formalization - Requirements Translation

Behavior Tree

Functional Requirement —

_ then a car is arrives, e T care
if the gate is open the car proceeds, ? Open ? ?Closed ?
otherwise if the gate is closed, when .
the driver presses the button | orver
it causes the gate to open [ Proceeds | PPresses Buton}??
1 BUTTON
. . [Pressed]
Formalization
— clarification and preservation of intent e
. . . 1
— strict use of original vocabulary [Open)

— removes ambiguity, aliases, etc
— aids stakeholder validation, understanding
— approaches repeatability
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A Brief Introduction to Behavior Engineering

« Behavior Engineering (BE) acronyms ...

Behavior Modeling Process
(BMP)

Behavior Modeling Language (BML)

Behavior Trees (BT)

Composition Trees (CT)

Requirements Translation

Requirement Behavior Trees
(RBTSs)

Requirement Composition Tree
(RCT)

Requirements Integration

Integrated Behavior Tree
(IBT)

Integrated Composition Tree
(ICT)

System Specification

Model Behavior Tree
(MBT)

Model Composition Tree
(MCT)

System Design

Design Behavior Tree
(DBT)

Design Composition Tree
(DCT)
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A Brief Introduction to Behavior Engineering

Basic Nodes

Component : :
tag Bohavior] (a) State Realisation
tag Component (b) Selection

S umma ry tag Component (c) Event

of the o | e )@ Guare
B e h avior tag Component (e) Input®

> Message <

T Component *
re e tag <Message > (f) Output

Branching

c
[state A ]

D C
[state A] [stateB]

(k) Parallel Branching

C
[state A]

] C
Tstate AT PstateB?

(I) Alternate Branching

Notation

Nodes with Thread Control

(9) Reference
(h) Branch-Kill
(i) Reversion

(j) Synchronisation

Composition

(n) Atomic Composition

Griffith
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A Brief Introduction to Behavior Engineering

ATP_Controller

How to translate from a Requirement in A1 "=
Natural Language to an RBT

R6 ATP_Controller
+ |?Value =1 :: CAUTION ?

‘],

R6. If a caution signal is returned to the ATP controller then the algrm R | Enabled]
is enabled within the driver’s cab. Furthermore, once the alarny has whors| i oot Flow
been enabled, if the speed of the train is not observed /o be e ~
decreasing then the ATP controller activates the train’s fraking of

system. re [ATP_CONTROLLER| | COntrol

+ | ? NOT(Observed) ?

TRAIN
[ Speed[Decreasing ]]

The Tag traces these Behavior Tree nodes Gack to
Reguirement 6.

re |ATP_CONTROLLER

[ Activates ]
A ‘+" and a yellow color denote the Gehavior is implied et BRAKING _SYSTEN
Oy the requirements et TRAIN

\Jf v
R6 | BRAKING_SYSTEM
+ [ Activated ]

Red color denotes Gehavior is missing in the requirements
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A Brief Introduction to Behavior Engineering

ATP_Controller

How to translate from a Requirementin ¥ > Value <

W

Natural Language 10 an RBT R6 | ATP_Controller

+ |?Value =1 :: CAUTION ?

‘],

ALARM
[ Enabled ]

R6. If a caution signal is returned to the ATP controller then the alarm
is enabled within the driver’s cab. Furthermore, once the alarm has
been enabled, if the speed of the train is not observed to be
decreasing then the ATP controller activates the train’s brakin
system.

Driver's_Cab

I
R6 |ATP_CONTROLLER
+ | ? NOT(Observed) ?

TRAIN

0 Speed[D i
ATP Controller receives a value from another component  SpeedDecreasng

re |ATP_CONTROLLER
Chicck if the value is a caution gignal — [ Activates |

what| BRAKING_SYSTEM
Jf it is, enaBle the Alarm. To maintain the intent of the -

o TRAIN
original requirement, use a relation to show the Alarm = |
is enabled in the Driver's Cal. .

R6 | BRAKING_SYSTEM
+ [ Activated ]
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A Brief Introduction to Behavior Engineering

ATP_Controller

. . R6 = =
How to translate from a Requirement in e
Natural Language to an RBT Re | ATP_Controller
ALARM
R6. If a caution signal is returned to the ATP controller then the alarm R®1  [Enabled]
is enabled within the driver’s cab. Furthermore, once the alarm has whors| i oot
been enabled, if the speed of the train is not observed to be e -
decreasing then the ATP controller activates the train’s braking
Syste m. R6 |ATP_CONTROLLER

+ | ? NOT(Observed) ?

/ what Rl
[ Speed[Decreasing ]]

ATP_CONTROLLER
[ Activates ]

Jt ig implied the ATP Controller must observe whether
the Train's speed is decreasing.

R6

Jf the Train isn’'t decreaging in speed, the ATP Controller
activates the Braking System of the Train.

what| BRAKING_SYSTEM

\what
(of TRAIN

.. Which results in the Braking System Geing Activated —_ — BRAKIiG SveTEM
+ [ Activated ]

WJ UNlI-\I'EgSHQ A& Linkoping University pe Iab lll



Overview

« The Software-Hardware Integration Problem
A Brief Introduction to Behavior Engineering
 Integrating Modelica & BE Models

« (Case Study: An Automated Train Protection System

WJ UN.I‘\I/EII\’:ISHD A& Linkoping University pe labunn



The Software-Hardware Integration Problem

 Integration of Modelica and BE models occurs after the models are
compiled into C/C++ source files.

« Uses Modelica external functions mapped to C source code which link
to the ‘C++’ implementation of the BE model.

« The Modelica model is responsible for managing all interactions with
the BE model.

— When to execute the BE Model
— When to send Sensor Information

— When to receive Actuator Information

Y T ] ;
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Integrating Modelica & BE Models

(when condition2 then )
updateSensor(value)

( Modelica )
4 N\
Modelica
Model
Y
(Modelica Model (C++) )

N
/when initial () then N\
startBT();
\end when; )
(Wwhen conditionthen )
cycleBT();
\end when; Y,

\End when; )
when condition3 then
state = pollActutator();
end when;
J
'\\ )j
O '

Griffith
NIVERSITY

A& Linkoping University

(" External Functions )

(@)
s a

( startBT )
( cycleBT )

(updateSensor)

(" Behavior Engineering

~

- e )

(" BEModel (C++) )
4 N\

execute

( Scheduler )

( poIIActuator)

- /)

N
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Case Study: An Automated Train Protection System

Modelica Model of the ATP System (graphical view)

signalPosition,
signalValue Train Tracks
Signal Sensors : L
signalPosition, signalValue

sensor values

desired

speed Train speed Driver
position, speed desiredSpeed, reset

apply brake

ATP System
(BE Model)

reset

<
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Case Study: An Automated Train Protection System

Modelica Textual Model

// External Functions included here

model Track
discrete Integer currentSignalValue "Value of Last Signal
displayed to Driver/ATP System";
parameter Real[:] signalPosition "Positions of Signals on
the Track";
parameter Integer[:] signalValue "Values of Signals on
the Track";
equation
// Determine current signal value
end Track;

model Train
Real s, v, m, maxSpeed, maxBrakeForce,
maxAccelerationPower, maxAccelerationForce;
parameter Real accPowerEff = 0.80 "Engine Efficiency in %";
equation
maxAccelerationPower/accPowerEff =
maxAccelerationForce*v;
end Train;

record Driver
Real desiredAcceleration;
parameter Real[:] desiredSpeed;
parameter Real[:] position;

end Diriver;

A& Linkoping University
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model Main
/I Define track, train, driver parameters
parameter Real[10] sensor1 = {0,0,1,2,0,0,2,2,0,0} "Sensor1
value at signalPosition";
Real sensor1Reading "Current Sensor1 reading";
// Similar for Sensor 2 & 3
Real fa, fd, doBrake(start=0), minAccelerationForce,
desiredAccelerationForce;
discrete Boolean clock1, clock2, ...;
/I Define clock frequencies
equation
when initial() then startBT(0); end when;
when clock1 then cycleBT(0); end when;
when clock2 then doBrake = if (train1.v >= 0) then
getBrake(0) else 0;
/[ if driver reset’'s ATP send message
/I if signal changes send new sensor values
fa = if doBrake>0 then 0
elseif // ensure not over maximum Acceleration force
else desiredAccelerationForce;
fd = if doBrake>0 then train1.maxBrakeForce else 0;
= (fa-fd)/train1.m;
der(v) = a;
der(track1.s) = train1.v;
/[ if train passing signal then update sensors
/I determine driver’s desired acceleration (a =

train1.v)/ (2*distance))
pe labess

(desiredSpeed -

end Main;




Case Study: An Automated Train Protection System

BE Model of the ATP System

(yellow: implied from requirements, red: missing)

R3

Sensor
[Detect Signal]

L

Sensor
>> detect(valuel) <<

R7

ATP
?value=0?

i

{

Sensor
>> detect(value2) <<

R7

Alarm
[Enabled]

I

¥

Sensor
>> detect(value3) <<

Brakes
[Activated]

=>

L

Sensor
[Calculate Majority(/)]

value, value, value3

[

R4

Sensor
< SENSOR(value) >

[

R3

Sensor
[Detect Signal]
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Speedometer
?22?/27?

prevSpeed <= speed

y

Brakes
[Activated]

R2 ATP
+ [Operating]
R4 ATP 13 R6 Speedometer
>SENSOR(value)< - | >>newSpeedValue <<
R6 Speedometer
5 ATP RS ATP - [prevSpeed:=speed]
+ ?value=17? + ?ELSE ?
R6 Speedometer
\b J/ - | >> getSpeed(speed) <<
- Alarm RS ATP \L
[Enabled] - >SENSOR(value)<
R6 Speedometer
>> newSpeedValue <<
R6 Speedometer R6 Speedometer
+ | ? prevSpeed <= speed ? - ? prevSpeed > speed ?
A6 Brakes R7 ATP
[Activated] + | > SENSOR(value) <
. ATP R7 ATP o ATP R7 ATP
>> reset << - ?value=07? ?value=2? + ?ELSE ?
== \b A
R9 Alarm R7 Brakes R7 Speedometer 7 Alarm R7 ATP
[Disabled] - [Activated] - 2?7/97? [Disabled] + >SENSOR(value)<
\b / prevSpeed <= speed \b
R9 Brakes . ATP init.A
[Deactivated] - >SENSOR(value)<
R8 ATP
+ >SENSOR(value)<
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ERROR: invalidrestore
OFFENDING COMMAND: restore

STACK:

-savelevel-
-savelevel-



