
Seamlessly Integrating
Software & Hardware Modelling

for Large-Scale Systems

Toby Myers, Peter Fritzson and R. Geoff Dromey

Overview

• The Software-Hardware Integration Problem

• A Brief Introduction to Behavior Engineering

• Integrating Modelica & BE Models

• Case Study: An Automated Train Protection System

Overview

• The Software-Hardware Integration Problem

• A Brief Introduction to Behavior Engineering

• Integrating Modelica & BE Models

• Case Study: An Automated Train Protection System

The Software-Hardware Integration Problem

• At the early stages of system development, many decisions must be

made about how the system will be realised as a combination of

Software and Hardware

• Requirements of the system at these early stages lack quantified

and temporal information so it is hard to make an informed decision

• Changing the partioning of software / hardware or how they interact

later in development can be time-consuming and costly

• There is a potential for errors and incompatibility to be introduced as

software/hardware specifications are created independently

Example: Model of Automated Train Protection System

An ATP System monitors train position and speed, and

may apply brakes if the driver does not react in time

The Software-Hardware Integration Problem
Starting from System Requirements

The Software-Hardware Integration Problem

Decreasing

by how much?

How often

does this need

to be checked?

Interaction with Sensors …

The Software-Hardware Integration Problem

What response

time is realistically

acceptable?

Interaction with Actuators …

The Software-Hardware Integration Problem

Perform in

Software

or

Hardware?

Software / Hardware Partitioning …

The Software-Hardware Integration Problem

Will it be deployed on

many different types of trains?

The Environment in which the system will exist …

What are the

characteristics of the train?

How far apart

are the signals?

Overview

• The Software-Hardware Integration Problem

• A Brief Introduction to Behavior Engineering

• Integrating Modelica & BE Models

• Case Study: An Automated Train Protection System

A Brief Introduction to Behavior Engineering

Behavior Engineering for Requirements Analysis

• 5 Large-scale industry projects

– In Defence, Transportation, Banking and Finance

– Between 800-1250 requirements

• All previously reviewed with respective organisations
internal review processes

• Defect detection rate approximately 2 to 3 times that of
traditional ad-hoc, checklist-based, and scenario-based

reading techniques reported in Porter, 1998.

Requirements Evaluation Using Behavior Trees

Findings from Industry

Daniel Powell

http://aswec07.cs.latrobe.edu.au/5.zip

Formalization - Requirements Translation

Formalization
– clarification and preservation of intent
– strict use of original vocabulary
– removes ambiguity, aliases, etc
– aids stakeholder validation, understanding
– approaches repeatability

1 CAR
?? Arrives ??

1
GATE

? Open ?
1 GATE

? Closed ?

 Functional Requirement

When a car is arrives,
if the gate is open the car proceeds,

otherwise if the gate is closed, when
the driver presses the button
it causes the gate to open

1
CAR

[Proceeds]
1 DRIVER

??[[Presses]Button]??

1 BUTTON
[Pressed]

1 GATE
[Open]

Behavior Tree

Behavior Tree

A Brief Introduction to Behavior Engineering

• Behavior Engineering (BE) acronyms …

Behavior Modeling Process

(BMP)

Behavior Modeling Language (BML)

Behavior Trees (BT) Composition Trees (CT)

Requirements Translation
Requirement Behavior Trees

(RBTs)

Requirement Composition Tree

(RCT)

Requirements Integration
Integrated Behavior Tree

(IBT)

Integrated Composition Tree

(ICT)

System Specification
Model Behavior Tree

(MBT)

Model Composition Tree

(MCT)

System Design
Design Behavior Tree

(DBT)

Design Composition Tree

(DCT)

A Brief Introduction to Behavior Engineering

Summary

of the

Behavior

Tree

Notation

A Brief Introduction to Behavior Engineering

How to translate from a Requirement in

Natural Language to an RBT

R6. If a caution signal is returned to the ATP controller then the alarm
is enabled within the driver’s cab. Furthermore, once the alarm has
been enabled, if the speed of the train is not observed to be
decreasing then the ATP controller activates the train’s braking
system.

The Tag traces these Behavior Tree nodes back to

Requirement 6.

A ‘+’ and a yellow color denote the behavior is implied

by the requirements

Flow

of

Control

Red color denotes behavior is missing in the requirements

A Brief Introduction to Behavior Engineering

How to translate from a Requirement in

Natural Language to an RBT

R6. If a caution signal is returned to the ATP controller then the alarm
is enabled within the driver’s cab. Furthermore, once the alarm has
been enabled, if the speed of the train is not observed to be
decreasing then the ATP controller activates the train’s braking
system.

ATP Controller receives a value from another component

Check if the value is a caution signal

If it is, enable the Alarm. To maintain the intent of the

original requirement, use a relation to show the Alarm

is enabled in the Driver’s Cab.

A Brief Introduction to Behavior Engineering

How to translate from a Requirement in

Natural Language to an RBT

R6. If a caution signal is returned to the ATP controller then the alarm
is enabled within the driver’s cab. Furthermore, once the alarm has
been enabled, if the speed of the train is not observed to be
decreasing then the ATP controller activates the train’s braking
system.

It is implied the ATP Controller must observe whether

the Train’s speed is decreasing.

If the Train isn’t decreasing in speed, the ATP Controller

activates the Braking System of the Train.

.. Which results in the Braking System being Activated

Overview

• The Software-Hardware Integration Problem

• A Brief Introduction to Behavior Engineering

• Integrating Modelica & BE Models

• Case Study: An Automated Train Protection System

The Software-Hardware Integration Problem

• Integration of Modelica and BE models occurs after the models are

compiled into C/C++ source files.

• Uses Modelica external functions mapped to C source code which link

to the ‘C++’ implementation of the BE model.

• The Modelica model is responsible for managing all interactions with

the BE model.

– When to execute the BE Model

– When to send Sensor Information

– When to receive Actuator Information

Integrating Modelica & BE Models

Overview

• The Software-Hardware Integration Problem

• A Brief Introduction to Behavior Engineering

• Integrating Modelica & BE Models

• Case Study: An Automated Train Protection System

Case Study: An Automated Train Protection System

Modelica Model of the ATP System (graphical view)

Case Study: An Automated Train Protection System
Modelica Textual Model

// External Functions included here

model Track

discrete Integer currentSignalValue "Value of Last Signal

displayed to Driver/ATP System";

parameter Real[:] signalPosition "Positions of Signals on

the Track";

parameter Integer[:] signalValue "Values of Signals on

the Track";

equation

// Determine current signal value

end Track;

model Train

Real s, v, m, maxSpeed, maxBrakeForce,

maxAccelerationPower, maxAccelerationForce;

parameter Real accPowerEff = 0.80 "Engine Efficiency in %";

equation

maxAccelerationPower/accPowerEff =

maxAccelerationForce*v;

end Train;

record Driver

Real desiredAcceleration;

parameter Real[:] desiredSpeed;

parameter Real[:] position;

end Driver;

model Main

// Define track, train, driver parameters

parameter Real[10] sensor1 = {0,0,1,2,0,0,2,2,0,0} "Sensor1

value at signalPosition";

Real sensor1Reading "Current Sensor1 reading";

// Similar for Sensor 2 & 3

Real fa, fd, doBrake(start=0), minAccelerationForce,

desiredAccelerationForce;

discrete Boolean clock1, clock2, ...;

// Define clock frequencies

equation

when initial() then startBT(0); end when;

when clock1 then cycleBT(0); end when;

when clock2 then doBrake = if (train1.v >= 0) then
getBrake(0) else 0;

// if driver reset’s ATP send message

// if signal changes send new sensor values

fa = if doBrake>0 then 0

elseif // ensure not over maximum Acceleration force

else desiredAccelerationForce;

fd = if doBrake>0 then train1.maxBrakeForce else 0;

a = (fa-fd)/train1.m;

der(v) = a;

der(track1.s) = train1.v;

// if train passing signal then update sensors

// determine driver’s desired acceleration (a = (desiredSpeed -

train1.v)/ (2*distance))

end Main;

Case Study: An Automated Train Protection System

BE Model of the ATP System

(yellow: implied from requirements, red: missing)
R2
+

ATP
[Operating]

R3
Sensor

[Detect Signal]

R3
+

Sensor
>> detect(value1) <<

R3
+

Sensor
>> detect(value2) <<

R3
+

Sensor
>> detect(value3) <<

R4
Sensor

< SENSOR(value) >

R7
ATP

? value = 0 ?
R6
+

ATP
? value = 1 ?

R5
+

ATP
? ELSE ?

R7
Alarm

[Enabled]
R6

Alarm
[Enabled]

R6
+

Speedometer
? prevSpeed <= speed ?

R6
-

Speedometer
? prevSpeed > speed ?

R6
-

Speedometer
>> newSpeedValue <<

R6
-

Speedometer
[prevSpeed:=speed]

R6
-

Speedometer
>> getSpeed(speed) <<

R6
Brakes

[Activated]

R8
ATP

>> reset <<

R9
Alarm

[Disabled]

R9
Brakes

[Deactivated]

R7
+

ATP
> SENSOR(value) <

R7
-

ATP
? value = 0 ?

R7
ATP

? value = 2 ?
R7
+

ATP
? ELSE ?

R4
+

Sensor
[Calculate Majority(/)]

/ value1, value2, value3

R7
Alarm

[Disabled]

-
Speedometer

??? / ???

/ prevSpeed <= speed

R8
+

ATP
>SENSOR(value)<

^

R7
-

Speedometer
??? / ???

/ prevSpeed <= speed

R7
-

Brakes
[Activated]

=> - -

R4
ATP

>SENSOR(value)<

init

R7
+

Brakes
[Activated]

=>

R5
-

ATP
>SENSOR(value)<

^

R6 Speedometer
>> newSpeedValue <<

^

-
Brakes

[Activated]

=>

R7
+

ATP
>SENSOR(value)<

^

R7
-

ATP
>SENSOR(value)<

init.^

R3
Sensor

[Detect Signal]

^

E
R
R
O
R
:

i
n
v
a
l
i
d
r
e
s
t
o
r
e

O
F
F
E
N
D
I
N
G

C
O
M
M
A
N
D
:

r
e
s
t
o
r
e

S
T
A
C
K
:

-
s
a
v
e
l
e
v
e
l
-

-
s
a
v
e
l
e
v
e
l
-

