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The Software-Hardware Integration Problem

• At the early stages of system development, many decisions must be 

made about how the system will be realised as a combination of 

Software and Hardware

• Requirements of the system at these early stages lack quantified 

and temporal information so it is hard to make an informed decision

• Changing the partioning of software / hardware or how they interact 

later in development can be time-consuming and costly

• There is a potential for errors and incompatibility to be introduced as 

software/hardware specifications are created independently



Example: Model of Automated Train Protection System

An ATP System monitors train position and speed, and 

may apply brakes if the driver does not react in time



The Software-Hardware Integration Problem
Starting from System Requirements



The Software-Hardware Integration Problem

Decreasing

by how much?

How often 

does this need 

to be checked?

Interaction with Sensors …



The Software-Hardware Integration Problem

What response

time is realistically

acceptable?

Interaction with Actuators …



The Software-Hardware Integration Problem

Perform in 

Software 

or

Hardware?

Software / Hardware Partitioning …



The Software-Hardware Integration Problem

Will it be deployed on 

many different types of trains?

The Environment in which the system will exist …

What are the

characteristics of the train?

How far apart

are the signals?
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A Brief Introduction to Behavior Engineering

Behavior Engineering for Requirements Analysis

• 5 Large-scale industry projects

– In Defence, Transportation, Banking and Finance

– Between 800-1250 requirements

• All previously reviewed with respective organisations 
internal review processes 

• Defect detection rate approximately 2 to 3 times that of 
traditional ad-hoc, checklist-based, and scenario-based 

reading techniques reported in Porter, 1998.

Requirements Evaluation Using Behavior Trees

Findings from Industry

Daniel Powell

http://aswec07.cs.latrobe.edu.au/5.zip



Formalization - Requirements Translation

Formalization 
– clarification and preservation of intent
– strict use of original vocabulary
– removes ambiguity, aliases, etc
– aids stakeholder validation, understanding
– approaches repeatability

1 CAR
?? Arrives ??

1
GATE

? Open ?
1 GATE

? Closed ?

 Functional Requirement

When a car is arrives,
if the gate is open the car proceeds,

otherwise if the gate is closed, when
the driver presses the button
it causes the gate to open

1
CAR

[ Proceeds ]
1 DRIVER

??[[Presses]Button]??

1 BUTTON
[ Pressed ]

1 GATE
[ Open ]

Behavior Tree

Behavior Tree



A Brief Introduction to Behavior Engineering

• Behavior Engineering (BE) acronyms …

Behavior Modeling Process 

(BMP)

Behavior Modeling Language (BML)

Behavior Trees (BT) Composition Trees (CT)

Requirements Translation
Requirement Behavior Trees

(RBTs)

Requirement Composition Tree

(RCT)

Requirements Integration
Integrated Behavior Tree

(IBT)

Integrated Composition Tree

(ICT)

System Specification
Model Behavior Tree

(MBT)

Model Composition Tree

(MCT)

System Design
Design Behavior Tree

(DBT)

Design Composition Tree

(DCT)



A Brief Introduction to Behavior Engineering

Summary 

of the 

Behavior

Tree 

Notation



A Brief Introduction to Behavior Engineering

How to translate from a Requirement in 

Natural Language to an RBT

R6.   If a caution signal is returned to the ATP controller then the alarm 
is enabled within the driver’s cab. Furthermore, once the alarm has 
been enabled, if the speed of the train is not observed to be 
decreasing then the ATP controller activates the train’s braking 
system.

The Tag traces these Behavior Tree nodes back to 

Requirement 6.

A ‘+’ and a yellow color denote the behavior is implied 

by the requirements

Flow 

of 

Control

Red color denotes behavior is missing in the requirements



A Brief Introduction to Behavior Engineering

How to translate from a Requirement in 

Natural Language to an RBT

R6.   If a caution signal is returned to the ATP controller then the alarm 
is enabled within the driver’s cab. Furthermore, once the alarm has 
been enabled, if the speed of the train is not observed to be 
decreasing then the ATP controller activates the train’s braking 
system.

ATP Controller receives a value from another component

Check if the value is a caution signal

If it is, enable the Alarm.  To maintain the intent of the 

original requirement, use a relation to show the Alarm 

is enabled in the Driver’s Cab.



A Brief Introduction to Behavior Engineering

How to translate from a Requirement in 

Natural Language to an RBT

R6.   If a caution signal is returned to the ATP controller then the alarm 
is enabled within the driver’s cab. Furthermore, once the alarm has 
been enabled, if the speed of the train is not observed to be 
decreasing then the ATP controller activates the train’s braking 
system.

It is implied the ATP Controller must observe whether 

the Train’s speed is decreasing.  

If the Train isn’t decreasing in speed, the ATP Controller 

activates the Braking System of the Train.

.. Which results in the Braking System being Activated 
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The Software-Hardware Integration Problem

• Integration of Modelica and BE models occurs after the models are 

compiled into C/C++ source files.

• Uses Modelica external functions mapped to C source code which link 

to the ‘C++’ implementation of the BE model.

• The Modelica model is responsible for managing all interactions with 

the BE model.

– When to execute the BE Model

– When to send Sensor Information

– When to receive Actuator Information



Integrating Modelica & BE Models
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Case Study: An Automated Train Protection System

Modelica Model of the ATP System (graphical view)



Case Study: An Automated Train Protection System
Modelica Textual Model

// External Functions included here

model Track

discrete Integer currentSignalValue "Value of Last Signal 

displayed to Driver/ATP System";

parameter Real[:] signalPosition "Positions of Signals on

the Track";

parameter Integer[:] signalValue "Values of Signals on

the Track";

equation

// Determine current signal value

end Track;

model Train

Real s, v, m, maxSpeed, maxBrakeForce,

maxAccelerationPower, maxAccelerationForce;

parameter Real accPowerEff = 0.80 "Engine Efficiency in %";

equation

maxAccelerationPower/accPowerEff = 

maxAccelerationForce*v;

end Train;

record Driver

Real desiredAcceleration;

parameter Real[:] desiredSpeed;

parameter Real[:] position;

end Driver;

model Main

// Define track, train, driver parameters

parameter Real[10] sensor1 = {0,0,1,2,0,0,2,2,0,0} "Sensor1 

value at signalPosition";

Real sensor1Reading "Current Sensor1 reading";

// Similar for Sensor 2 & 3

Real fa, fd, doBrake(start=0), minAccelerationForce, 

desiredAccelerationForce;

discrete Boolean clock1, clock2, ...;

// Define clock frequencies

equation

when initial() then startBT(0); end when;

when clock1 then cycleBT(0); end when;

when clock2 then doBrake = if (train1.v >= 0) then
getBrake(0) else 0;

// if driver reset’s ATP send message

// if signal changes send new sensor values

fa = if doBrake>0 then 0

elseif // ensure not over maximum Acceleration force

else desiredAccelerationForce;

fd = if doBrake>0 then train1.maxBrakeForce else 0;

a = (fa-fd)/train1.m;

der(v) = a;

der(track1.s) = train1.v;

// if train passing signal then update sensors

// determine driver’s desired acceleration (a = (desiredSpeed -

train1.v)/ (2*distance))

end Main;



Case Study: An Automated Train Protection System

BE Model of the ATP System

(yellow: implied from requirements, red: missing)
R2
+

ATP
[Operating]

R3
Sensor

[Detect Signal]

R3
+

Sensor
>> detect(value1) <<

R3
+

Sensor
>> detect(value2) <<

R3
+

Sensor
>> detect(value3) <<

R4
Sensor

< SENSOR(value) >

R7
ATP

? value = 0 ?
R6
+

ATP
? value = 1 ?

R5
+

ATP
? ELSE ?

R7
Alarm

[Enabled]
R6

Alarm
[Enabled]

R6
+

Speedometer
? prevSpeed <= speed ?

R6
-

Speedometer
? prevSpeed > speed ?

R6
-

Speedometer
>> newSpeedValue <<

R6
-

Speedometer
[prevSpeed:=speed]

R6
-

Speedometer
>> getSpeed(speed) <<

R6
Brakes

[Activated]

R8
ATP

>> reset <<

R9
Alarm

[Disabled]

R9
Brakes

[Deactivated]

R7
+

ATP
> SENSOR(value) <

R7
-

ATP
? value = 0 ?

R7
ATP

? value = 2 ?
R7
+

ATP
? ELSE ?

R4
+

Sensor
[Calculate Majority(/)]

/ value1, value2, value3

R7
Alarm

[Disabled]

-
Speedometer

??? / ???

/ prevSpeed <= speed

R8
+

ATP
>SENSOR(value)<

^

R7
-

Speedometer
??? / ???

/ prevSpeed <= speed

R7
-

Brakes
[Activated]

=> - -

R4
ATP

>SENSOR(value)<

init

R7
+

Brakes
[Activated]

=>

R5
-

ATP
>SENSOR(value)<

^

R6 Speedometer
>> newSpeedValue <<

^

-
Brakes

[Activated]

=>

R7
+

ATP
>SENSOR(value)<

^

R7
-

ATP
>SENSOR(value)<

init.^

R3
Sensor

[Detect Signal]

^
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